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question

should household inequality affect the conduct of cyclical stabilization policy?



methodology

McKay and Wolf presents a sequence-space Jacobian based technique to

� derive a “welfare-based” quadratic loss function incorporating the planner’s
concern for inequality

� derive a solution to the optimal policy problem in the form of a targeting rule

� analyze optimal policy which minimizes some ad-hoc loss functions

main result
concern for inequality only has a moderate effect on optimal interest rate policy
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what does “optimal” mean?

� typically Pareto optimal

� allocations which minimize the McKay-Wolf “welfare based” loss function are not
Pareto optimal
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what does the McKay-Wolf loss function deliver?



insights from a simple risk sharing problem

� 2 agents: i ∈ {1, 2}

� stochastic endowments: yi,t = ytζi,t for i ∈ {1, 2}

◦ idiosyncratic risk ζ ∈ {ζl, ζh} where ζl = 1−∆, ζh = 1 + ∆ for ∆ ∈ (0, 1)

◦ idiosyncratic risk perfectly negatively correlated

P [(ζ1,t, ζ2,t) = (ζl, ζh)] = P [(ζ1,t, ζ2,t) = (ζh, ζl)] =
1

2

◦ aggregate risk ln yt ∼ N(0, σ2
y) y1,t + y2,t = yt
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Pareto problem

� Pareto problem:

maxϕ1


∞∑
t=0

∑
ζt1,y

t

βtp(ζt1, y
t) ln

(
c1(ζ

t
1, y

t)
)+ ϕ2


∞∑
t=0

∑
ζt2,y

t

βtp(ζt2, y
t) ln

(
c2(ζ

t
2, y

t)
)

s.t. c1(ζ
t
1, y

t) + c2(ζ
t
2, y

t) = yt

� Pareto weights ϕi = ϕ1(ζ
0
i , ζ

0
j , y

0) can depend on histories up to date 0

� solution:

ϕ1

c1(ζt1, y
t)

=
ϕ2

c2(ζt2, y
t)
⇒ c1(ζ

t
1, y

t) =
ϕ1

ϕ1 + ϕ2

yt and c2(ζ
t
2, y

t) =
ϕ2

ϕ1 + ϕ2

yt

full insurance: ci(ζ
t
i , y

t) does not depend on realization of ζti
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McKay-Wolf problem
� MW problem:

max


∞∑
t=0

∑
ζt1,y

t

βtp(ζt1, y
t)ϕ1(ζ

t
1) ln

(
c1(ζ

t
1, y

t)
)+


∞∑
t=0

∑
ζt2,y

t

βtp(ζt2, y
t)ϕ2(ζ

t
2) ln

(
c2(ζ

t
2, y

t)
)

s.t. c1(ζ
t
1, y

t) + c2(ζ
t
2, y

t) = yt

� MW weights on flow utilities at date t ϕ1(ζ
t
1), ϕ2(ζ

t
2) can depend on history of

idiosyncratic shocks up to date t

◦ same as Pareto weights only if ϕ1(ζt1) and ϕ2(ζt1) are constant functions

◦ else, planner is maximizing distorted individual preferences

� solution:
ϕ1(ζ

t
1)

c1(ζt1, y
t)

=
ϕ2(ζ

t
2)

c2(ζt2, y
t)
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McKay-Wolf problem

MW calibrate to US data, which generates steady state inequality/under-insurance

� choose ϕi(ζ
t
i ) to rationalize this level of steady state under-insurance as optimal

◦ ϕi(ζti ) = 1
u′(ζi,t)

= ζi,t rationalizes no redistribution as optimal in steady state

ζ1,t
c1(ζt1, 1)

=
ζ2,t

c2(ζt2, 1)
⇒ ci(ζ

t
i , 1) = ζi,t

� also alters planner’s desire to provide insurance out of steady state

ζ1,t
c1(ζt1, y

t)
=

ζ2,t
c2(ζt2, y

t)
⇒ ci(ζ

t
i , 1) = ζi,tyt

� can always find feasible Pareto improvement relative to MW’s optimal allocation
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implications for optimal monetary policy



simpler version of MW model

� households i ∈ [0, 1] with preferences E0
∑∞

t=0 β
t
{

ln ci,t − nt − ψ
2 (ln Πt)

2
}

� stochastic income yi,t = ωi,tyt where ωi,t ∈ {ωh,t, ωl,t}

◦ ωl,t < ωh,t, Pr(ωj′,t | ωj,t−1) = 1
2 for any (j, j′) and

ωh,t+ωl,t

2 = 1

◦ ωi,t can vary with GDP yt: ωh,t = ωhy
γ
t

� 0 liquidity, borrowing limit: ch,t = yh,t, cl,t = yl,t and 1
2ch,t + 1

2cl,t = yt

y−1h,t = βRtEt
{

0.5y−1h,t+1 + 0.5y−1l,t

}
monetary policy controls Rt

� Phillips curve
ln Πt = β ln Πt+1 + κ (log yt − log zt) + εt
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do MW weights lead to meaningfully different answer?

� RANK (ωh,t = ωl,t = 1) (ŷt − ẑt)︸ ︷︷ ︸
output-gap

+ λp̂t︸︷︷︸
price-stability

= 0

� TANK (any Pareto weights) (ŷt − ẑt) + λp̂t + δ × ŷt︸ ︷︷ ︸
distributional
concerns

= 0

� TANK (MW weights) (ŷt − ẑt) + λp̂t + δ? × ŷt = 0

� MW solution
◦ puts less weight on output stabilization than any Pareto problem 0 < δ? < δ

◦ relative magnitude proportional to steady state inequality

δ

δ?
∝ ωh
ωl
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how did we get here?

� first-order accurate optimal policy from naive LQ requires efficient steady state

� If constrained-efficient steady state, then need to solve QQ (Benigno-Woodford)

� HANK: steady state consumption risk is inefficient for any Pareto planner

◦ cannot use naive LQ unless fiscal policy provides full insurance in steady state

� MW weights rationalize steady state with idiosyncratic risk as “optimal”

◦ naive LQ gives “accurate solution” but not to the “correct” problem

� ideally, extend methodology to solve QQ problem

◦ not trivial since constrained efficient steady state may not exist (Bhandari et al.)
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final thoughts

� solution to policy problem using MW weights does not satisfy Pareto optimality

◦ can trivially always find alternative allocation which makes all agents better off

� using MW weights ⇒ optimal monetary policy biased to be closer to RANK

◦ assumptions reduce the planner’s motives to provide insurance/ reduce inequality
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