Exchange Rates and Monetary Policy with Heterogeneous

 Agents: Sizing up the Real Income Channel byAuclert, Rognlie, Souchier and Straub

Discussion by Sushant Acharya

November 7, 2023

question

how do changes in exchange rates affect aggregate demand?
this paper argues:
\square devaluations generally expansionary in RANKbut can be contractionary in HANK via real income channel

what is the "real income" channel?

$\max _{c_{H}, c_{F}}\left[(1-\alpha)^{\frac{1}{\eta}}\left(c_{H}\right)^{\frac{\eta-1}{\eta}}+\alpha^{\frac{1}{\eta}}\left(c_{F}\right)^{\frac{\eta-1}{\eta}}\right]^{\frac{\eta}{\eta-1}} \quad$ s.t $\quad p c_{H}+c_{F}=p \omega$

what is the "real income" channel?

$$
\max _{c_{H}, c_{F}}\left[(1-\alpha)^{\frac{1}{\eta}}\left(c_{H}\right)^{\frac{\eta-1}{\eta}}+\alpha^{\frac{1}{\eta}}\left(c_{F}\right)^{\frac{\eta-1}{\eta}}\right]^{\frac{\eta}{\eta-1}} \quad \text { s.t } \quad p c_{H}+c_{F}=p \omega
$$

\square Demand for own good:

$$
c_{H}=\mathcal{C}(p, p \omega)=\frac{(1-\alpha) p \omega}{(1-\alpha) p+\alpha p^{\eta}}
$$

what is the "real income" channel?

$$
\max _{c_{H}, c_{F}}\left[(1-\alpha)^{\frac{1}{\eta}}\left(c_{H}\right)^{\frac{\eta-1}{\eta}}+\alpha^{\frac{1}{\eta}}\left(c_{F}\right)^{\frac{\eta-1}{\eta}}\right]^{\frac{\eta}{\eta-1}} \quad \text { s.t } \quad p c_{H}+c_{F}=p \omega
$$

\square Demand for own good:

$$
c_{H}=\mathcal{C}(p, p \omega)=\frac{(1-\alpha) p \omega}{(1-\alpha) p+\alpha p^{\eta}}
$$Marshallian demand is -ve sloped: $p \downarrow \Rightarrow c \uparrow$, holding income $p \omega$ fixed

$$
\mathcal{C}_{1}(p, p \omega)<0
$$

what is the "real income" channel?

$$
\max _{c_{H}, c_{F}}\left[(1-\alpha)^{\frac{1}{\eta}}\left(c_{H}\right)^{\frac{\eta-1}{\eta}}+\alpha^{\frac{1}{\eta}}\left(c_{F}\right)^{\frac{\eta-1}{\eta}}\right]^{\frac{\eta}{\eta-1}} \quad \text { s.t } \quad p c_{H}+c_{F}=p \omega
$$

\square Demand for own good:

$$
c_{H}=\mathcal{C}(p, p \omega)=\frac{(1-\alpha) p \omega}{(1-\alpha) p+\alpha p^{\eta}}
$$Marshallian demand is -ve sloped: $p \downarrow \Rightarrow c \uparrow$, holding income $p \omega$ fixed

$$
\mathcal{C}_{1}(p, p \omega)<0
$$

$\square \ldots$ but slope of Walrasian demand depends on η relative to 1

$$
-\frac{d \ln c_{H}}{d \ln p}=\underbrace{\frac{(1-\alpha) p+\alpha p^{\eta} \eta}{(1-\alpha) p+\alpha p^{\eta}}}_{\begin{array}{c}
\text { substitution } \\
\text { due to } p \downarrow
\end{array}}-\underbrace{1}_{\begin{array}{c}
\text { income effect } \\
\text { due to } p \downarrow
\end{array}}
$$

real income channel

$\eta>1$: substitution dominates income effect
decrease in price increases demand

real income channel

$\eta<1$: income effect overwhelms substitution
decrease in price decreases demand

$$
\text { Need small } \eta \text { for real income channel to have bite }
$$

why is this effect small in RANK SOE models?

\square
infinite horizon permanent income hypothesis consumers

- current consumption depends on lifetime income, NOT current income

why is this effect small in RANK SOE models?

\square
infinite horizon permanent income hypothesis consumers

- current consumption depends on lifetime income, NOT current incomeone time temporary date t depreciation $d Q_{t}>0$
- change in current income: $d y_{t}=-d Q_{t}$
- but much smaller change in lifetime income: $d y_{t}^{p}=-\frac{r}{1+r} d Q_{t}$

why is this effect small in RANK SOE models?

\square
infinite horizon permanent income hypothesis consumers

- current consumption depends on lifetime income, NOT current incomeone time temporary date t depreciation $d Q_{t}>0$
- change in current income: $d y_{t}=-d Q_{t}$
- but much smaller change in lifetime income: $d y_{t}^{p}=-\frac{r}{1+r} d Q_{t}$
- with $r=2 \%$, very small effect of "real income" channel

$$
d Q_{t}=1 \% \quad \Rightarrow \quad d c_{t}=d y_{t}^{p} \approx-0.02 \%
$$

why is this effect small in RANK SOE models?

\square
infinite horizon permanent income hypothesis consumers

- current consumption depends on lifetime income, NOT current incomeone time temporary date t depreciation $d Q_{t}>0$
- change in current income: $d y_{t}=-d Q_{t}$
- but much smaller change in lifetime income: $d y_{t}^{p}=-\frac{r}{1+r} d Q_{t}$
- with $r=2 \%$, very small effect of "real income" channel

$$
d Q_{t}=1 \% \quad \Rightarrow \quad d c_{t}=d y_{t}^{p} \approx-0.02 \%
$$if instead borrowing constrained (htm) $\quad d c_{t}=d y_{t}=-1 \%$

a bare bones heterogeneous agent SOE
fixed PPI $\pi_{H, t}=\pi_{F, t}^{*}=0$ but not CPI

$$
\pi_{t}=\frac{\alpha}{1-\alpha} \Delta \hat{q}_{t+1}
$$

a bare bones heterogeneous agent SOE

\square fixed PPI $\pi_{H, t}=\pi_{F, t}^{*}=0$ but not CPI

$$
\pi_{t}=\frac{\alpha}{1-\alpha} \Delta \hat{q}_{t+1}
$$

\square Demand for Home goods

$$
\hat{y}_{t}=(1-\alpha)\left[(1-\theta) \hat{c}_{t}^{\mathrm{pih}}+\theta \hat{c}_{t}^{\mathrm{htm}}\right]+\underbrace{\frac{\alpha}{1-\alpha} \chi \hat{q}_{t}}_{\text {substitution }}
$$

a bare bones heterogeneous agent SOE

\square
fixed PPI $\pi_{H, t}=\pi_{F, t}^{*}=0$ but not CPI

$$
\pi_{t}=\frac{\alpha}{1-\alpha} \Delta \hat{q}_{t+1}
$$Demand for Home goods

$$
\hat{y}_{t}=(1-\alpha)\left[(1-\theta) \hat{c}_{t}^{\text {pih }}+\theta \hat{c}_{t}^{\mathrm{htm}}\right]+\frac{\alpha}{1-\alpha} \chi \hat{q}_{t}
$$

aggregate euler equation

$$
\Delta \hat{c}_{t+1}=(1-\theta) \underbrace{\gamma\left(\hat{i}_{t}-\frac{\alpha}{1-\alpha} \Delta \hat{q}_{t+1}\right)}_{\begin{array}{c}
\text { consumption growth } \\
\text { of pih }
\end{array}}+\theta \underbrace{(\overbrace{-\frac{\alpha}{1-\alpha} \Delta \hat{q}_{t+1}}^{\text {real-income channel }}+\Delta \hat{y}_{t+1})}_{\begin{array}{c}
\text { consumption growth } \\
\text { of } h \text { htm }
\end{array}}
$$

a bare bones heterogeneous agent SOE

\square
fixed PPI $\pi_{H, t}=\pi_{F, t}^{*}=0$ but not CPI

$$
\pi_{t}=\frac{\alpha}{1-\alpha} \Delta \hat{q}_{t+1}
$$Demand for Home goods

$$
\hat{y}_{t}=(1-\alpha)\left[(1-\theta) \hat{c}_{t}^{\text {pih }}+\theta \hat{c}_{t}^{\mathrm{htm}}\right]+\frac{\alpha}{1-\alpha} \chi \hat{q}_{t}
$$

aggregate euler equation

$$
\Delta \hat{c}_{t+1}=(1-\theta) \underbrace{\gamma\left(\hat{i}_{t}-\frac{\alpha}{1-\alpha} \Delta \hat{q}_{t+1}\right)}_{\begin{array}{c}
\text { consumption growth } \\
\text { of pih }
\end{array}}+\theta \underbrace{(\overbrace{-\frac{\alpha}{1-\alpha} \Delta \hat{q}_{t+1}}^{\text {real-income channel }}+\Delta \hat{y}_{t+1})}_{\begin{array}{c}
\text { consumption growth } \\
\text { of } \text { htm }
\end{array}}
$$

uip

$$
i_{t}=i_{t}^{*}+\frac{1}{1-\alpha} \Delta q_{t+1}
$$

effect of Foreign interest rates on Home output

\square care about $d y / d Q$, but Q is endogenous

effect of Foreign interest rates on Home output

\square
care about $d y / d Q$, but Q is endogenousdepend on how domestic monetary policy responds to $\hat{i}_{t}^{*} \uparrow$ shock:

$$
\Delta \hat{q}_{t+1}=(1-\alpha)\left(\hat{i}_{t}-\hat{i}_{t}^{*}\right)
$$

effect of Foreign interest rates on Home output

\square
care about $d y / d Q$, but Q is endogenousdepend on how domestic monetary policy responds to $\hat{i}_{t}^{*} \uparrow$ shock:

$$
\Delta \hat{q}_{t+1}=(1-\alpha)\left(\hat{i}_{t}-\hat{i}_{t}^{*}\right)
$$

- $\hat{i}_{t}=\hat{i}_{t}^{*}$: keep exchange rates fixed $\Delta \hat{q}_{t+1}=0$

effect of Foreign interest rates on Home output

\square
care about $d y / d Q$, but Q is endogenousdepend on how domestic monetary policy responds to $\hat{i}_{t}^{*} \uparrow$ shock:

$$
\Delta \hat{q}_{t+1}=(1-\alpha)\left(\hat{i}_{t}-\hat{i}_{t}^{*}\right)
$$

- $\hat{i}_{t}=\hat{i}_{t}^{*}$: keep exchange rates fixed $\Delta \hat{q}_{t+1}=0$
- $\hat{i}_{t}=0:$ monetary policy lets ex-rate depreciate $\Delta \hat{q}_{t+1}=-(1-\alpha) \hat{i}_{t}^{*}$

effect of Foreign interest rates on Home output

\square
care about $d y / d Q$, but Q is endogenousdepend on how domestic monetary policy responds to $\hat{i}_{t}^{*} \uparrow$ shock:

$$
\Delta \hat{q}_{t+1}=(1-\alpha)\left(\hat{i}_{t}-\hat{i}_{t}^{*}\right)
$$

- $\hat{i}_{t}=\hat{i}_{t}^{*}$: keep exchange rates fixed $\Delta \hat{q}_{t+1}=0$
- $\hat{i}_{t}=0:$ monetary policy lets ex-rate depreciate $\Delta \hat{q}_{t+1}=-(1-\alpha) \hat{i}_{t}^{*}$
- Auclert et al: real rate unchanged:

$$
\hat{r}_{t}=0 \quad \Rightarrow \quad \hat{i}_{t}=-\frac{\alpha}{1-\alpha} \hat{i}_{t}^{*}
$$

effect of exchange rates on Home output

RANK with $\hat{i}_{t}=0$:

$$
\Delta \hat{y}_{t+1}=(\underbrace{\alpha \gamma}_{\begin{array}{c}
\text { intertemporal } \\
\text { substitution }
\end{array}}-\underbrace{\frac{\alpha \chi}{1-\alpha}}_{\begin{array}{c}
\text { expenditure } \\
\text { switching }
\end{array}}) \hat{i}_{t}^{*}
$$

- contractionary depreciation in RANK: $\hat{y}_{t}<0$ and $\hat{q}_{t}>0$ if $\gamma>\frac{\chi}{1-\alpha}$

effect of exchange rates on Home output

\square RANK with $\hat{i}_{t}=0$:

$$
\Delta \hat{y}_{t+1}=\left(\alpha \gamma-\frac{\alpha \chi}{1-\alpha}\right) \hat{i}_{t}^{*}
$$

\square RANK with $\widehat{r}_{t}=0$

$$
\Delta \hat{y}_{t+1}=-\frac{\alpha \chi}{1-\alpha} \hat{i}_{t}^{*} \quad \text { no contractionary depreciation: } \hat{y}_{t}>0 \text { and } \hat{q}_{t}>0
$$

effect of exchange rates on Home output

RANK with $\hat{i}_{t}=0$:

$$
\Delta \hat{y}_{t+1}=\left(\alpha \gamma-\frac{\alpha \chi}{1-\alpha}\right) \hat{i}_{t}^{*}
$$

$\square \operatorname{HANK}(\theta>0)$ with $\hat{i}_{t}=0$

$$
\Delta \hat{y}_{t+1}=\underbrace{\frac{1}{1-\theta(1-\alpha)}}_{\text {Keynesian multiplier }} \times(\underbrace{\alpha \theta}_{\text {real income }}+\underbrace{(1-\theta) \alpha \gamma}_{\begin{array}{c}
\text { intertemporal } \\
\text { substitution }
\end{array}}-\underbrace{\frac{\alpha \chi}{1-\alpha}}_{\begin{array}{c}
\text { expenditure } \\
\text { switching }
\end{array}}) \hat{i}_{t}^{*}
$$

effect of exchange rates on Home output

\square RANK with $\hat{i}_{t}=0$:

$$
\Delta \hat{y}_{t+1}=\left(\alpha-\frac{\alpha \chi}{1-\alpha}\right) \hat{i}_{t}^{*}
$$HANK $(\theta>0)$ with $\hat{i}_{t}=0$ with $\gamma=1$

$$
\Delta \hat{y}_{t+1}=\underbrace{\frac{1}{1-\theta(1-\alpha)}}_{\text {Keynesian multiplier }} \times\left(\alpha-\frac{\alpha \chi}{1-\alpha}\right) \hat{i}_{t}^{*}
$$

contractionary depreciation in HANK only when it is also in RANK

overall...

thought provoking paper!however, both HANK and RANK can feature contractionary depreciation... but not when monetary policy tries to keep $\widehat{r}_{t}=0$, need small χimportant to provide empirical support for small χEND

