Exchange Rates and Monetary Policy with Heterogeneous Agents: Sizing up the Real Income Channel by Auclert, Rognlie, Souchier and Straub

Discussion by Sushant Acharya

November 7, 2023

The views expressed herein are those of the author and not necessarily those of the Bank of Canada

question

how do changes in exchange rates affect aggregate demand?

this paper argues:

 $\Box\,$ devaluations generally expansionary in RANK

 $\hfill\square$ but can be contractionary in HANK via real income channel

$$\max_{c_H,c_F} \left[(1-\alpha)^{\frac{1}{\eta}} \left(c_H \right)^{\frac{\eta-1}{\eta}} + \alpha^{\frac{1}{\eta}} \left(c_F \right)^{\frac{\eta-1}{\eta}} \right]^{\frac{\eta}{\eta-1}} \qquad \text{s.t} \qquad pc_H + c_F = p\omega$$

$$\max_{c_H, c_F} \left[(1-\alpha)^{\frac{1}{\eta}} (c_H)^{\frac{\eta-1}{\eta}} + \alpha^{\frac{1}{\eta}} (c_F)^{\frac{\eta-1}{\eta}} \right]^{\frac{\eta}{\eta-1}} \qquad \text{s.t} \qquad pc_H + c_F = p\omega$$

 \Box Demand for own good:

$$c_H = C(p, p\omega) = \frac{(1-\alpha)p\omega}{(1-\alpha)p + \alpha p^{\eta}}$$

$$\max_{c_H, c_F} \left[(1-\alpha)^{\frac{1}{\eta}} (c_H)^{\frac{\eta-1}{\eta}} + \alpha^{\frac{1}{\eta}} (c_F)^{\frac{\eta-1}{\eta}} \right]^{\frac{\eta}{\eta-1}} \qquad \text{s.t} \qquad pc_H + c_F = p\omega$$

 \Box Demand for own good:

$$c_H = C(p, p\omega) = \frac{(1-\alpha)p\omega}{(1-\alpha)p + \alpha p^{\eta}}$$

□ Marshallian demand is -ve sloped: $p \downarrow \Rightarrow c \uparrow$, holding income $p\omega$ fixed $C_1(p, p\omega) < 0$

$$\max_{c_H, c_F} \left[(1-\alpha)^{\frac{1}{\eta}} (c_H)^{\frac{\eta-1}{\eta}} + \alpha^{\frac{1}{\eta}} (c_F)^{\frac{\eta-1}{\eta}} \right]^{\frac{\eta}{\eta-1}} \qquad \text{s.t} \qquad pc_H + c_F = p\omega$$

 \Box Demand for own good:

$$c_H = C(p, p\omega) = \frac{(1-\alpha)p\omega}{(1-\alpha)p + \alpha p^{\eta}}$$

 \Box Marshallian demand is -ve sloped: $p\downarrow\Rightarrow c\uparrow,$ holding income $p\omega$ fixed $\mathcal{C}_1(p,p\omega)<0$

 \Box ... but slope of Walrasian demand depends on η relative to 1

$$\boxed{-\frac{d\ln c_H}{d\ln p} = \underbrace{\frac{(1-\alpha)\,p + \alpha p^\eta \eta}{(1-\alpha)\,p + \alpha p^\eta}}_{\substack{\text{substitution} \\ \text{due to } p \downarrow}} - \underbrace{1}_{\substack{\text{income effect} \\ \text{due to } p \downarrow}}$$

real income channel

real income channel

Need small η for real income channel to have bite

□ infinite horizon **permanent income hypothesis** consumers

• current consumption depends on lifetime income, NOT current income

 $\hfill\square$ infinite horizon permanent income hypothesis consumers

 $\circ~$ current consumption depends on lifetime income, NOT current income

 \Box one time temporary date t depreciation $dQ_t > 0$

 \circ change in current income: $dy_t = -dQ_t$

 \circ but much smaller change in lifetime income: $dy_t^p = -\frac{r}{1+r}dQ_t$

 $\hfill\square$ infinite horizon permanent income hypothesis consumers

 $\circ~$ current consumption depends on lifetime income, NOT current income

 \Box one time temporary date t depreciation $dQ_t > 0$

 \circ change in current income: $dy_t = -dQ_t$

 $\circ~$ but much smaller change in lifetime income: $dy_t^p = -\frac{r}{1+r} dQ_t$

 \circ with r = 2%, very small effect of "real income" channel

$$dQ_t = 1\%$$
 \Rightarrow $dc_t = dy_t^p \approx -0.02\%$

 $\Box\,$ infinite horizon permanent income hypothesis consumers

 $\circ~$ current consumption depends on lifetime income, NOT current income

 \Box one time temporary date t depreciation $dQ_t > 0$

 \circ change in current income: $dy_t = -dQ_t$

 $\circ~$ but much smaller change in lifetime income: $dy_t^p = -\frac{r}{1+r} dQ_t$

 \circ with r = 2%, very small effect of "real income" channel

$$dQ_t = 1\%$$
 \Rightarrow $dc_t = dy_t^p \approx -0.02\%$

 \Box if instead **borrowing constrained** (htm) $dc_t = dy_t = -1\%$

 \Box fixed PPI $\pi_{H,t} = \pi^*_{F,t} = 0$ but not CPI

$$\pi_t = \frac{\alpha}{1-\alpha} \Delta \hat{q}_{t+1}$$

 \Box fixed PPI $\pi_{H,t} = \pi^*_{F,t} = 0$ but not CPI

$$\pi_t = \frac{\alpha}{1-\alpha} \Delta \hat{q}_{t+1}$$

 \Box Demand for Home goods

$$\hat{y}_t = (1 - \alpha) \left[(1 - \theta) \hat{c}_t^{\mathsf{pih}} + \theta \hat{c}_t^{\mathsf{htm}} \right] + \underbrace{\frac{\alpha}{1 - \alpha} \chi \hat{q}_t}_{\mathsf{substitution}}$$

 \Box fixed PPI $\pi_{H,t} = \pi^*_{F,t} = 0$ but not CPI

$$\pi_t = \frac{\alpha}{1-\alpha} \Delta \hat{q}_{t+1}$$

 \Box Demand for Home goods

$$\hat{y}_t = (1 - \alpha) \left[(1 - \theta) \hat{c}_t^{\mathsf{pih}} + \theta \hat{c}_t^{\mathsf{htm}} \right] + \frac{\alpha}{1 - \alpha} \chi \hat{q}_t$$

 $\hfill\square$ aggregate euler equation

$$\Delta \hat{c}_{t+1} = (1-\theta) \underbrace{\gamma \left(\hat{i}_t - \frac{\alpha}{1-\alpha} \Delta \hat{q}_{t+1}\right)}_{\text{consumption growth}} + \theta \underbrace{\left(\underbrace{-\frac{\alpha}{1-\alpha} \Delta \hat{q}_{t+1} + \Delta \hat{y}_{t+1}\right)}_{\text{consumption growth}} \right)_{\text{consumption growth}} \theta \underbrace{\left(\underbrace{-\frac{\alpha}{1-\alpha} \Delta \hat{q}_{t+1} + \Delta \hat{y}_{t+1}\right)}_{\text{consumption growth}} \right)_{\text{consumption growth}}$$

 \Box fixed PPI $\pi_{H,t} = \pi^*_{F,t} = 0$ but not CPI

$$\pi_t = \frac{\alpha}{1 - \alpha} \Delta \hat{q}_{t+1}$$

 \Box Demand for Home goods

$$\hat{y}_t = (1 - \alpha) \left[(1 - \theta) \hat{c}_t^{\mathsf{pih}} + \theta \hat{c}_t^{\mathsf{htm}} \right] + \frac{\alpha}{1 - \alpha} \chi \hat{q}_t$$

 \Box aggregate euler equation

$$\Delta \hat{c}_{t+1} = (1-\theta) \underbrace{\gamma \left(\hat{i}_t - \frac{\alpha}{1-\alpha} \Delta \hat{q}_{t+1}\right)}_{\text{consumption growth}} + \theta \underbrace{\left(\underbrace{-\frac{\alpha}{1-\alpha} \Delta \hat{q}_{t+1}}_{\text{consumption growth}} + \Delta \hat{y}_{t+1}\right)}_{\text{consumption growth}}$$

🗆 uip

$$i_t = i_t^* + \frac{1}{1 - \alpha} \Delta q_{t+1}$$

 \Box care about dy/dQ, but Q is endogenous

 \Box care about dy/dQ, but Q is endogenous

 \Box depend on how domestic monetary policy responds to $\hat{i}_t^* \uparrow$ shock:

$$\Delta \hat{q}_{t+1} = (1-\alpha)(\hat{i}_t - \hat{i}_t^*)$$

 \Box care about dy/dQ, but Q is endogenous

 \Box depend on how domestic monetary policy responds to $\hat{i}_t^* \uparrow$ shock:

$$\Delta \hat{q}_{t+1} = (1-\alpha)(\hat{i}_t - \hat{i}_t^*)$$

$$\circ \ \hat{i}_t = \hat{i}_t^st$$
: keep exchange rates fixed $\Delta \hat{q}_{t+1} = 0$

 \Box care about dy/dQ, but Q is endogenous

 \Box depend on how domestic monetary policy responds to $\hat{i}_t^* \uparrow$ shock:

$$\Delta \hat{q}_{t+1} = (1-\alpha)(\hat{i}_t - \hat{i}_t^*)$$

$$\circ \,\, \hat{i}_t = \hat{i}_t^st$$
: keep exchange rates fixed $\Delta \hat{q}_{t+1} = 0$

 $\hat{i}_t = 0$: monetary policy lets ex-rate depreciate $\Delta \hat{q}_{t+1} = -(1-lpha)\hat{i}_t^*$

 \Box care about dy/dQ, but Q is endogenous

 \Box depend on how domestic monetary policy responds to $\hat{i}_t^* \uparrow$ shock:

$$\Delta \hat{q}_{t+1} = (1 - \alpha)(\hat{i}_t - \hat{i}_t^*)$$

$$\circ \,\, {\hat i}_t = {\hat i}_t^st$$
: keep exchange rates fixed $\Delta {\hat q}_{t+1} = 0$

 $\circ~\hat{i}_t=0:$ monetary policy lets ex-rate depreciate $\Delta \hat{q}_{t+1}=-(1-\alpha)\hat{i}_t^*$

• Auclert et al: real rate unchanged:

$$\hat{r}_t = 0 \qquad \Rightarrow \qquad \hat{i}_t = -\frac{lpha}{1-lpha}\hat{i}_t^*$$

• contractionary depreciation in RANK: $\hat{y}_t < 0$ and $\hat{q}_t > 0$ if $\gamma > \frac{\chi}{1-\alpha}$

 \Box RANK with $\hat{i}_t = 0$:

$$\Delta \hat{y}_{t+1} = \left(\alpha \gamma - \frac{\alpha \chi}{1 - \alpha}\right) \hat{i}_t^*$$

 \Box RANK with $\hat{r}_t = 0$

$$\Delta \hat{y}_{t+1} = -rac{lpha \chi}{1-lpha} \hat{i}_t^*$$
 no contractionary depreciation: $\hat{y}_t > 0$ and $\hat{q}_t > 0$

 \Box RANK with $\hat{i}_t = 0$:

$$\Delta \hat{y}_{t+1} = \left(\alpha\gamma - \frac{\alpha\chi}{1-\alpha}\right)\hat{i}_t^*$$

$$\Box \text{ HANK } (\theta > 0) \text{ with } \hat{i}_t = 0$$

$$\Delta \hat{y}_{t+1} = \underbrace{\frac{1}{1 - \theta (1 - \alpha)}}_{\text{Keynesian multiplier}} \times \Big(\underbrace{\alpha \theta}_{\text{real income}} + \underbrace{(1 - \theta) \alpha \gamma}_{\text{intertemporal substitution}} - \underbrace{\frac{\alpha \chi}{1 - \alpha}}_{\substack{\text{expenditure switching}}} \Big) \hat{i}_t^*$$

 \Box RANK with $\hat{i}_t = 0$:

$$\Delta \hat{y}_{t+1} = \left(\alpha - \frac{\alpha \chi}{1 - \alpha}\right) \hat{i}_t^*$$

 \Box HANK ($\theta > 0$) with $\hat{i}_t = 0$ with $\gamma = 1$

$$\Delta \hat{y}_{t+1} = \underbrace{\frac{1}{1-\theta\left(1-\alpha\right)}}_{\text{Keynesian multiplier}} \times \left(\alpha - \frac{\alpha\chi}{1-\alpha}\right) \hat{i}_t^*$$

contractionary depreciation in HANK only when it is also in RANK

overall...

 \Box thought provoking paper!

 $\hfill\square$ however, both HANK and RANK can feature contractionary depreciation

 \Box ... but not when monetary policy tries to keep $\hat{r}_t = 0$, need small χ

 \Box important to provide empirical support for small χ

END