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Abstract

We show that in Heterogeneous-Agent New-Keynesian (HANK) economies with countercyclical
risk the natural interest rate is endogenous and co-moves with output, leaving the economy sus-
ceptible to self-fulfilling fluctuations. Unlike in Representative-Agent New-Keynesian models, the
Taylor principle is not sufficient to guarantee uniqueness of equilibrium in HANK if risk is even
mildly countercyclical: multiple bounded-equilibria exist, no matter how strongly monetary policy
responds to changes in inflation. For an active-monetary policy to eliminate self-fulfilling fluctua-
tions, it must stabilize the endogenous natural rate fluctuations. Alternatively, a passive-monetary
and active-fiscal regime can also eliminate equilibrium multiplicity.
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Economists have long argued that shifts in expectations can generate fluctuations in output and
inflation even absent any change in fundamentals, and that countercyclical stabilization policy plays
an important role in mitigating such fluctuations (Keynes, 1936). Left unchecked, these self-fulfilling
beliefs can destabilize the economy. Consequently, a central tenet in the science of monetary policy is
that when inflation rises, a central bank should increase nominal interest rates aggressively to raise the
real interest rate. Without this aggressive response, a self-fulfilling inflationary process may take hold:
households’ expectations of higher inflation lowers the real interest rate, which in turn stimulates
demand and pushes up actual inflation, thereby confirming the initial belief. Raising nominal rates
more than one-for-one with inflation nips these non-fundamental beliefs in the bud, stabilizing the
economy. Arguably, the determination to keep inflation in check and inflation expectations anchored
underlies the steep increase in policy rates around the world in response to the high inflation during
the recovery from the COVID-19 recession.

The Representative-Agent New Keynesian (RANK) models, which provide the theoretical backbone
for raising nominal rates more than one-for-one with inflation – the Taylor principle – abstract from
inequality, market incompleteness and the distributional effects of monetary policy. In recent years,
there has been growing interest among both academics and policymakers to understand how these
features affect monetary transmission and whether the aforementioned central tenet continues to hold.
The fast-growing Heterogeneous Agent New-Keynesian (HANK) literature seeks to address this.1 We
contribute to this literature by showing that no matter how aggressively monetary policy responds to
changes in inflation, HANK economies with countercyclical risk are susceptible to self-fulfilling fluc-
tuations or “endogenous demand shocks”. This is true even when risk is mildly countercyclical. To
understand the key force behind this inherent instability, suppose that absent any change in funda-
mentals, households suddenly entertain the belief that the economy will enter a recession. If risk is
countercyclical, this lower level of economic activity implies that households expect to face higher risk
in the future, and increase their desired level of precautionary savings to self-insure against the higher
probability of future declines in consumption. This higher desire to save puts downward pressure on
the natural interest rate. If monetary policy keeps policy rates unchanged in the face of a lower natural
rate, households reduce their current spending. In the presence of nominal rigidities, this lower spend-
ing translates into lower output and below target inflation, pushing the economy into a recession and
rendering the initial pessimistic belief self-fulfilling. This is analogous to an “endogenous” negative
demand shock, which results in non-fundamental fluctuations in output and inflation.

The reason why HANK economies with countercyclical risk are susceptible to self-fulfilling fluctu-
ations is that the natural rate of interest is endogenous and co-moves with output in such economies.2

Standard monetary policy rules, even if they satisfy the Taylor principle, allow for self-fulfilling fluc-
tuations in the natural rate, which act as “endogenous demand shocks”, and result in non-fundamental
fluctuations in output and inflation. Thus, standard monetary policy rules cannot implement a unique

1See, for example, Kaplan et al. (2018); McKay et al. (2016); Auclert et al. (forthcoming); Acharya and Dogra (2020); Ravn
and Sterk (2021); Bilbiie (2024); Gornemann et al. (2016); Ahn et al. (2018) among others.

2In the RANK literature, the natural rate is typically defined as the notional real interest rate that would arise in an
economy where all prices were flexible. Instead, our definition of the natural rate follows Keynes (1936) and is defined as the
real interest rate consistent with output remaining constant at some particular level. Importantly, while this definition of the
natural rate coincides with the real interest rate in the flexible price limit in RANK economies and HANK economies with
acyclical risk, the two concepts diverge when risk is countercyclical. See Section 2.3 for a detailed discussion.
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equilibrium if risk is even mildly countercyclical. To ensure a unique equilibrium, monetary policy
must act to prevent these endogenous fluctuations in the natural rate. To see this, consider the same
example as above, where households believe that the economy is about to enter a recession. The re-
sulting increase in the desired level of precautionary savings pushes down the natural interest rate.
Unlike above, suppose that monetary policy instead lowers nominal rates sufficiently in response to
the lower natural rate. This discourages households from reducing their current spending, and output
from declining, thus preventing the initial beliefs from being confirmed in equilibrium.3

More generally, we show that monetary policy rules that do not address the endogenous fluctu-
ations in the natural rate fail to eliminate these non-fundamental fluctuations driven by endogenous
demand shocks. While our baseline model shows this in the context of a simple inflation targeting
monetary policy rule, this characterization continues to hold even when we allow for other standard
monetary policy rules which have been shown to eliminate non-fundamental fluctuations in RANK.
In particular, we show that standard rules which adjust the policy rate in response to output fluctu-
ations or rules which display inertial behavior also fail to eliminate self-fulfilling fluctuations in our
HANK economy with countercyclical risk. Instead, a rule which can prevent these non-fundamental
fluctuations must adjust the nominal rate at least one-for-one with these endogenous fluctuations in the
natural rate. In other words, the rule must satisfy a form of the Taylor principle, but for natural rates.
In practical terms, this characterization implies that monetary policy must not only respond aggres-
sively to keep the private sector’s inflation expectations on target, but must also act as aggressively to
keep their expectations about real activity anchored. In fact, a central bank which ignores expectations
about real activity may fail at keeping even inflation expectations anchored, as doing so would leave
the door open to self-fulfilling beliefs driving non-fundamental fluctuations in output and inflation.

The source of equilibrium multiplicity described above is conceptually distinct from those identified
in the literature on liquidity traps. In particular, Benhabib et al. (2001b) show that the possibility
of a binding ELB (effective lower bound) on nominal rates results in multiple equilibria and global
indeterminacy in RANK.4 By contrast, our paper purposely abstracts from an ELB, in order to highlight
that countercyclical risk is a distinct force driving the global indeterminacy in HANK.

Our analysis goes beyond most existing studies of determinacy in HANK economies by considering
global, rather than local determinacy. The HANK literature has shown that achieving local determinacy
in HANK economies can be more demanding relative to RANK economies. Acharya and Dogra (2020);
Bilbiie (2024); Auclert et al. (2023); Ravn and Sterk (2021) find that if income risk is countercyclical, then
the Taylor principle is not sufficient to ensure local determinacy. However, they also show that while the
simple Taylor principle fails, a “cyclical-risk augmented Taylor principle”, which demands a stronger
response to inflation than in RANK, is sufficient for ensuring local determinacy. We show that while
a stronger response may be sufficient for local determinacy, it cannot rule out global indeterminacy if
risk is even mildly countercyclical. The only other paper which has studied global indeterminacy in

3In the same fashion, if households have optimistic beliefs about the economy, they perceive that they will face lower
income risk, causing them to reduce their desired level of precautionary savings. This in turn puts upward pressure on the
natural interest rate. If monetary policy does not raise the policy rate sufficiently in response to this upward pressure on the
natural rate, the higher spending by households leads to higher output and inflation, confirming the initial optimistic beliefs.
This acts like a positive endogenous demand shock.

4See also, Heathcote and Perri (2018), who show that in the presence of a binding ELB, the precautionary savings motive
of low wealth households can make the expectation of high unemployment a reality.
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the context of HANK models with countercyclical risk is Ravn and Sterk (2021).5 Our characterization
of global indeterminacy in the form of two steady states is complementary to theirs. However, unlike
Ravn and Sterk (2021), we provide a complete analytical characterization of the dynamics through
which countercyclical risk gives rise to global indeterminacy. Moreover, we also describe what kind of
policy design can eliminate global indeterminacy. Importantly, we show that designing policies which
simply eliminate the untargeted steady state may be unable to deliver global determinacy. In particular,
when we calibrate our model to capture an empirically realistic magnitude of countercyclical risk, we
show that global indeterminacy manifests not just in the form of multiple steady states, but also as a
stable cycle around the targeted steady state, in which the economy can get trapped permanently. We
then show that a policy design which ignores the possibility of a cycle, and focuses only on eliminating
the untargeted steady state, is unable to eliminate self-fulfilling fluctuations. Thus, we argue that fully
characterizing the different ways in which global indeterminacy can arise—not just through an untar-
geted steady state—is essential for policy design, since only policies that eliminate all non-fundamental
equilibria can guarantee global determinacy.

Our paper also contributes to the literature which studies how fiscal policy affects equilibrium
determinacy in heterogeneous agent economies. Kaplan et al. (2023) study multiplicity of equilibria
in a flexible-price heterogeneous-agent incomplete-market economy with nominal government debt.
They show that equilibrium multiplicity can emerge if the government runs persistent deficits in their
heterogeneous agent economy. Similarly, Bassetto and Cui (2018) and Farmer and Zabczyk (2019) study
overlapping generations economies with no nominal rigidities and show that price-level indeterminacy
may emerge. Brunnermeier et al. (2020) and Miao and Su (2024) study fiscal rules that can deliver
price level determinacy in incomplete markets economies in which agents face rate-of-return risk. In
contrast, we study equilibrium determinacy in heterogeneous agent economies with nominal rigidities,
and show that a regime with active fiscal policy and passive monetary policy can eliminate global
indeterminacy.

Our paper is also related to the older literature which studied global determinacy in RANK. Ben-
habib et al. (2001a) study the global determinacy properties of RANK economies under standard mon-
etary policy and fiscal rules. Their findings imply that the Taylor principle delivers global determinacy
unless (i) households enjoy utility from holding money, and the cross-partial derivative of the utility
function ∂2u(c,m)

∂c∂m < 0, or (ii) if money is an input in the production function. Benhabib and Eusepi
(2005) study a RANK economy with physical capital, and show that global indeterminacy in the form
of periodic cycles around the targeted steady state may emerge. Global indeterminacy in our HANK
economy arises due to conceptually different reasons relative to these papers since (i) our HANK
economy abstracts from the presence of money by considering the cashless limit and (ii) global inde-
terminacy emerges in our economy even when capital is not a factor of production. Instead, global
indeterminacy arises in our HANK economy because of the presence of countercyclical risk.

Finally, Beaudry et al. (2020) argue that alongside business cycle shocks, a substantial part of busi-
ness cycle fluctuations can be explained by deterministic boom-bust cycles. As in our paper, they
show that their New Keynesian model with financial frictions and countercyclical risk-premium fea-

5Ravn and Sterk (2021) study a HANK economy with search frictions and also find that global indeterminacy can emerge
in their economy with countercyclical income risk. They find that a second “unemployment trap” steady state with 100%
unemployment may emerge alongside the targeted equilibrium, implying global indeterminacy in their model.
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tures deterministic limit cycles via a Hopf-bifurcation, and that this provides a good description of
U.S. business cycle data. Instead, our focus is on understanding how countercyclical income risk in a
HANK economy can lead to global indeterminacy.

The rest of the paper is organized as follows. Section 1 describes the model environment, while
Section 2 characterizes equilibrium. Section 3 studies local and global determinacy under a standard
inflation targeting rule. Section 4.1 identifies the root of global indeterminacy and proposes a monetary
policy rule which implements a unique equilibrium, and Section 5 concludes.

1 Model

HANK models are typically not analytically tractable because the distribution of wealth is a state
variable which evolves endogenously. To make our point in the clearest possible way, we use an
analytically tractable HANK model in continuous time. We achieve analytical tractability in our HANK
model by assuming that utility is quasi-linear, which ensures that the aggregate dynamics of output
and inflation can be characterized independently of the dynamics of the distribution of wealth.6 For
simplicity, we abstract from aggregate risk.

1.1 Households

There is a continuum of households indexed by j ∈ [0, 1]. Each household has identical preferences
and the expected discounted lifetime utility of household j at date t can be written as

Vj(t) = max
{cj,τ ,nj,τ}∞

τ=t

Et

∫ ∞

t
e−ρ(τ−t)

 c1−γ−1

j,τ

1 − γ−1 − ψnj,τ

 dτ,

where cj,τ and nj,τ denote the household’s date τ consumption and hours worked respectively. γ

measures the elasticity of intertemporal substitution. The household’s choices at all dates must satisfy
the budget constraint and borrowing constraint:

daj,t

dt
= (it − πt)aj,t + wtξ j,tnj,t + Dt + Tt − cj,t with aj,t ≥ −a (1)

Households can trade a short-term risk-free nominal bond with return it. The real value of bond
holdings of household j at time t are denoted by aj,t. Household j supplies ξ j,tnj,t effective labor hours
and earns labor income wtξ j,tnj,t, where wt denotes the real wage. Since idiosyncratic productivity
ξ j,t is stochastic, households face labor income risk. In particular, we assume that ξ j follows a 2-
state Poisson process, ξ j ∈ {ξl , ξh}, where ξh > ξl . In addition to labor income, each household also
receives dividends from firms. For simplicity, we assume that all households receive an equal share
of dividends Dt and transfers from the government Tt. Pt denotes the aggregate price level in the
economy. In addition, each household faces a borrowing constraint, which states that their wealth
cannot fall below −a, where a ≥ 0.

6Lagos and Wright (2005) also use quasi-linear preferences for tractability in the context of their monetary-search model.
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λl,t denotes the rate at which a household with productivity ξh switches to productivity ξl , while
λh,t denotes the rate at which a household with productivity ξl switches to a ξh at date t. We allow
the switching intensities to vary over time to capture the notion that households face different levels of
income risk during economic expansions and contractions. In particular, we assume that

λl,t = λly−Θ
t , (2)

where Θ controls the cyclicality of income risk. Θ > 0 implies that when output is above its steady state
level (an expansion), ξh households are less likely to transition to the low productivity state.7 In what
follows, we normalize steady state output in the targeted steady state 1; see Appendix A.2 for details.

Taking some artistic liberty and treating the ξl state as “unemployment”, the specification above
would imply that households face a lower risk of becoming unemployed during economic expansions.
In contrast, Θ = 0 corresponds to acyclical income risk: the probability of transitioning from the ξh to ξl

state is independent of the level of economic activity.8

Since the rate at which households transition from productivity ξh to ξl depends on yt, the fraction
of households with productivity ξl (given by ηt) and with productivity ξh (given by 1 − ηt) would
change with the level of economic activity if λh,t was constant. To avoid this complication, we assume
that the rate λh,t adjusts to satisfy λh,tηt = λl,t(1 − ηt), ensuring that ηt = η for all dates t. This
assumption implies that λh,t = λhy−Θ

t , where λh is a constant and the fraction of ξl households at any
date is given by η = λl/(λl + λh). This assumption is made for expositional clarity; Appendix E.5
relaxes this assumption and shows that allowing ηt to vary over time, does not change our conclusion.

1.2 Firms

There is a continuum of monopolistically competitive firms indexed by k ∈ [0, 1]. At any date t, firm
k produces a differentiated intermediate good yk,t, which it sells to a representative final-goods firm.
The final-goods firm combines the varieties using a CES aggregator to produce the final-good yt:

yt =

[∫ 1

0
y

ε−1
ε

k,t dk
] ε

ε−1

, (3)

which yields the standard demand system for each variety k:

yk,t =

(
Pk,t

Pt

)−ε

yt (4)

Each intermediate goods producer uses a linear production function yk,t = ℓk,t, where ℓk,t denotes
the effective units of labor employed by firm k. Then, the period t profit of firm k can be written as

7Our results do not depend on the precise functional form of how this transition rate depends on the level of yt. We
discuss the robustness of our results to the particular functional form in Section 3.3.

8While countercyclical income risk is arguably the empirically relevant benchmark , there is no consensus on the exact
measure of countercyclicality. For example, Storesletten et al. (2004) find that the standard deviation of persistent shocks to
log household income increases from 0.12 to 0.21 as the aggregate economy moves from peak to trough. However, Guvenen
et al. (2014) finds that the variance of income is acyclical, but the left-skewness is countercyclical. More recently, Nakajima
and Smirnyagin (2019), using a broader definition of income, find that both the variance and left-skewness is countercyclical.
Our formulation is consistent with both the variance and left-skewness being countercyclical.
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Dk,t = (Pk,t/Pt)yk,t − (1 − τ)wtyk,t −Tk,t, where τ denotes a payroll subsidy, which we set to τ = ε−1 to
eliminate the average monopolistic markup. Furthermore, this payroll subsidy is financed by imposing
a lumpsum tax Tk,t = τwtyk,t, which the firm treats as given. In symmetric equilibrium, yk,t = yt and
dividends of any firm k ∈ [0, 1] can be written as Dt = (1 − wt) yt. Finally, nominal rigidities are
captured by a forward-looking Phillips curve:

π̇t = ρπt − κ (wt − 1) , (5)

where wt − 1 denotes the deviation of marginal cost from the flexible-price benchmark (in which wt = 1
for all t), and κ > 0 captures the slope of the Phillips curve. While we postulate this simple linear
Phillips curve (5) in our baseline model for tractability, Appendix E.3 shows that our results continue
to hold if we instead utilize a non-linear microfounded Phillips curve as in Rotemberg (1982).

1.3 Monetary and Fiscal Policy

Monetary Policy Monetary policy sets the nominal rate it according to a standard interest rate rule.
While we consider other standard monetary policy rules in Appendix E.1 and E.2, in our baseline
model, we specify monetary policy as a simple inflation-targeting rule:

it = r + ϕππt where ϕπ > 1, (6)

ϕπ > 1 in (6) denotes how aggressively the central bank raises the nominal rate when inflation is above
its steady state level of 0. As is standard in the RANK literature, we set the intercept to r, which
denotes the real interest rate in the flexible-price limit of our economy. As Appendix A.3.1 shows,
since we abstract from aggregate shocks, the unique equilibrium in the flexible-price limit features a
constant level of output yt = 1 and real interest rate r at each date t. Throughout this paper we will
require that the real interest rate in the targeted steady state is positive: r > 0.

Finally, it is important to point out that (6) does not impose an effective-lower bound (ELB) on
nominal rates. We purposely make this choice to highlight that the source of multiplicity that we
uncover is conceptually different from that in Benhabib et al. (2001b), where multiple equilibria arise
due to the presence of an ELB.

Fiscal policy For simplicity, in our baseline model we set government expenditures to zero, and
assume that the government runs a balanced budget at each date: τwtyt = Tt, where τwtyt is the
payroll subsidy paid out to firms, and Tt is the lumpsum tax on the same firms. We extend our
analysis to include government debt in Section 4.2, where we study non-Ricardian fiscal policy rules.
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2 Equilibrium

2.1 Household decisions

Since households have quasi-linear preferences, the date t optimal consumption decision of household
j with idiosyncratic productivity ξ j and wealth aj can be written as:

ct(aj, ξ j) =

(
ξ jwt

ψ

)γ

(7)

Equation (7) shows that the optimal consumption of household j does not depend on their wealth.
Consequently, in equilibrium, all households with idiosyncratic productivity ξ j, j ∈ {l, h} enjoy the
same level of consumption. We refer to the date t consumption of a household with productivity ξ j,

j ∈ {l, h} as cj,t. Normalizing ψ =
[
(1 − η)ξγ

h + ηξ
γ
l

] 1
γ , we have:

ch,t =
ξ

γ
h

(1 − η)ξγ
h + ηξ

γ
l

wγ
t and cl,t =

ξ
γ
l

(1 − η)ξγ
h + ηξ

γ
l

wγ
t , (8)

where ch,t > cl,t. While the consumption of each household does not depend on their wealth, the
amount of leisure they enjoy does depend on how wealthy they are. Comparing two households with
the same idiosyncratic productivity, the household with higher wealth tends to enjoy more leisure.
Furthermore, Appendix A.1 shows that for a given real interest rate, the expected consumption growth
of households with productivity ξl is always greater than that of households with productivity ξh.
Thus, in equilibrium, all households with productivity ξl are borrowing constrained. In contrast, ξh

households are on their Euler equation, which can be written as:

ċh,t

ch,t
= γ

(
it − πt − ρ

)
︸ ︷︷ ︸

intertemporal-substitution

+ γλl,t

[(
cl,t

ch,t

)− 1
γ

− 1

]
︸ ︷︷ ︸

precautionary savings

(9)

The first term on the RHS of (9) shows that the consumption growth of unconstrained households
depends positively on the real interest rate rt = it − πt: the intertemporal-substitution channel. A
higher real interest rate, holding all else constant, incentivizes the unconstrained households to delay
consumption, raising their consumption growth. The second term on the RHS of (9) captures the
precautionary-savings motive. The larger the drop in consumption when a ξh household transitions to
the ξl state (smaller cl/ch), the stronger is this motive. Similarly, holding cl/ch fixed, a higher risk
aversion (smaller γ) or a higher probability of transitioning from ξh to ξl (higher λl,t) also strengthen
this motive and increase consumption growth for any given real interest rate.

2.2 Market Clearing

Goods market clearing requires that the amount of final good produced must be consumed:

yt = (1 − η) ch,t + ηcl,t, (10)
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where the RHS of (10) is equal to aggregate consumption. Using (8), Appendix A.2 shows that (10)
implies a log-linear relationship between aggregate output and wages:

wt = y
1
γ

t (11)

Since wages w = 1 in the targeted steady state, (11) also implies that the steady state level of output in
the targeted steady state is y = 1. Using (8) and (11) also implies that ch,t and cl,t can be rewritten as:

ch,t =
ξ

γ
h

(1 − η)ξγ
h + ηξ

γ
l

yt and cl,t =
ξ

γ
l

(1 − η)ξγ
h + ηξ

γ
l

yt ⇒ ch,t

cl,t
=

(
ξh

ξl

)γ

, (12)

While consumption of both ξh and ξl households co-moves with output, the ratio ch,t/cl,t > 1 is constant
over time. Finally, at any date t, since all ξl households are borrowing constrained and have a = −a ,
asset market clearing requires that asset holdings of ξh households as a whole is given by ηa.

2.3 The neutral rate and the natural rate of interest

As is standard in the textbook treatment of the RANK model, the aggregate dynamics of output and
inflation in our tractable HANK economy can be also summarized by an IS curve and a Phillips curve.
Using (11) in (5), we can express the Phillips curve in terms of output and inflation:

π̇t = ρπt − κ
(

y
1
γ

t − 1
)

(13)

Appendix A.3.1 shows that using (12) and (2) in (9), the “IS curve” in our HANK economy is given
by:9

ẏt

yt
= γ

(
it − πt − r⋆(yt)

)
where r⋆(y) = ρ − σy−Θ (14)

As in the textbook 3-equation RANK model, (14) shows that output growth is positive when the
monetary policy implements a real interest rate rt = it − πt which is higher than natural rate of interest
r⋆(yt). Here, we define r⋆(y) as the real interest rate which sets ẏt/yt = 0 and yt = y for all t, i.e., r⋆(y)
is the real interest rate which is consistent with output remaining constant at yt = y for all t.

In the RANK limit of our model (λl = 0), since households do not face consumption risk and
because we abstract from aggregate shocks, the natural rate is constant over time and simply equal to
the discount rate: r⋆(y) = ρ. This means that setting r = r⋆ = ρ in RANK is consistent with output
remaining fixed at any level of output y. The natural rate r⋆(y) also coincides with the real interest rate
in the flexible-price limit of our economy, r = r⋆(y) = ρ. The same is true in HANK if risk is acyclical
(Θ = 0). The only difference is that now both the natural rate and the flexible-price real interest rate are
lower than in RANK, and are given by r⋆(y) = r = ρ−σ, where σ = λl

(
ξh
ξl
− 1
)

measures the expected
increase in marginal utility when a ξh household transitions to lower idiosyncratic productivity ξl ,

9In equilibrium, while the actual value of the debt limit a does not affect aggregate dynamics of yt and πt, it does matter for
the wealth distribution that emerges in equilibrium. However, quasi-linear preferences render our economy block-recursive,
allowing us to characterize the dynamics of output and inflation independently of the wealth distribution.
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and captures the fact that households face consumption risk. Clearly, σ = 0 if the probability of
transitioning to the low productivity state is zero (λl = 0), or if the consumption across the two
idiosyncratic productivity levels is the same (which occurs if ξh = ξl). In all other cases, σ > 0.
Since households face consumption risk, they save for precautionary reasons, and this requires a lower
interest rate for the asset market to clear.

However, if risk is countercyclical (Θ > 0), the natural rate is endogenous and co-moves with output:

dr⋆(y)
dy

= σΘy−(1+Θ) > 0, (15)

i.e., the real interest rate consistent with output being constant at a particular level y, now depends on
the level of output itself. Moreover, the natural rate r⋆(y) is an increasing function of y. Thus, in our
HANK economy with countercyclical risk, the flexible price real interest rate r = ρ − σ is, in general,
different than the natural rate r⋆(y). The two concepts only coincide in steady state when y = 1:
r = r⋆(1). To see why, recall that if output was lower than y = 1, countercyclical risk implies that
ξh households face greater consumption risk, as now they face a larger chance of switching to the ξl

state. This causes them to reduce their current consumption demand and increase their precautionary
savings. This greater desire to save implies that a lower real interest rate is required to clear asset
markets and keep demand constant at that lower level.

Notice that our definition of the natural rate of interest r⋆(y) differs from how the term “natural
rate” is used in the New Keynesian literature (see, e.g., Woodford (2003a); Galı́ (2015)). In the New
Keynesian literature, the natural rate is typically defined as the real interest rate which would prevail
in the flexible-price limit of the economy, which is equal to r = r⋆(1) = ρ − σ in our HANK model.
This flexible-price real interest rate depends on exogenous parameters, and potentially varies over
time only in response to exogenous shocks, e.g. shocks to the discount rate ρ. Importantly, it does not
depend on endogenous variables such as the level of output. Consequently, in RANK and in HANK
with acyclical risk, our definition of natural rate coincides with the flexible-price real interest rate. In
contrast, when risk is countercyclical Θ > 0, the natural rate r⋆(y), as we define it, does depend on
endogenous variables, specifically output: in a weak economy, where output is below its flexible price
level, a lower real interest rate is required to maintain demand, and hence output, at that level. In
contrast, even in our economy with Θ > 0, the flexible-price real interest rate does not depend on
endogenous variables, r = ρ − σ. Thus, in our HANK economy with countercyclical risk our definition
of the natural rate does not always coincide with the flexible-price real interest rate: there are many
natural rates r⋆(y), one for a given level of y, but there is a unique flexible-price real interest rate r,
which coincides with the natural rate consistent with y = 1. Our choice of terminology hearkens back
to Keynes (1936) (pp. 242-243):

For every rate of interest there is a level of employment for which that rate is the “natural” rate, in the
sense that the system will be in equilibrium with that rate of interest and that level of employment. ...
we might term the neutral rate of interest, ... the natural rate in the above sense which is consistent
with full employment, given the other parameters of the system. [emphasis ours]
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2.4 Aggregate dynamics and steady states

Given the monetary policy rule (6), Proposition 1 below shows that the aggregate dynamics in our
HANK economy are described by the 2-dimensional system of ordinary differential equations (ODEs).
However, rather than describing the dynamics of output, it is more convenient to characterize the
dynamics of the (scaled) output-gap, which We define as the log-deviation of output from its flexible-
price level scaled by γ−1: x = γ−1(ln y − ln 1).

Proposition 1. Given the interest rate rule (6), the aggregate dynamics of xt, πt can be written as:

ẋt = (ϕπ − 1)πt −
(

r⋆(xt)− r
)

(16a)

π̇t = ρπt − κ (ext − 1) (16b)

where r⋆(xt)− r = σ
(
1 − e−γΘxt

)
denotes the difference between the natural rate of interest and neutral rate of

interest. The target steady state is given by x = π = 0.

Proof. See Appendix A.3.1.

Equations (16a)-(16b) nest the RANK benchmark: in RANK σ = 0 and so, r⋆(xt) = r = ρ for any x,
implying that the last two terms on the RHS of (16a) eliminate each other. The same is true in HANK if
risk is acyclical (Θ = 0), even though the natural and neutral rates of interest are both lower in this case
than in RANK. Thus, (16a) and (16b) show that the global dynamics in the RANK benchmark and in a
HANK economy with acyclical (Θ = 0) are identical as long as ϕπ is the same in both economies. Thus,
as has also been pointed out by Werning (2015), simply the presence of risk does not necessarily alter
the dynamics of output and inflation. In contrast, when risk is countercyclical, (16a) reveals that an
extra force shapes global dynamics relative to the RANK and acyclical risk benchmark. In particular,
fluctuations in the output-gap drive an endogenous gap between the natural rate and neutral rate of
interest, which in turn feeds back into the dynamics of output and inflation.

The three panels of Figure 1 plot the nullclines associated with (16a)-(16b) in (x, π) space for dif-
ferent values of ϕπ. The solid-red line depicts the π̇t = 0 nullcline, which is unaffected by the presence
of risk or the cyclicality of risk. In contrast, in the RANK benchmark σ = 0 (or in HANK with Θ = 0),
the ẋ = 0-nullcline (equivalently the long-run IS) is depicted by the dashed-horizontal curve at π = 0,
while in HANK with Θ > 0, it is depicted by the upward sloping solid-blue curve. The reason that
the nullcline is flat in RANK (or in HANK with Θ = 0) is that r⋆(x) is constant, but when risk is
countercyclical, r⋆(x) co-moves with output, and is thus upward sloping.

Any intersection of the nullclines constitutes a steady-state. Clearly, both nullclines intersect at
x = π = 0, implying that the targeted steady state always exists, in which output equals its flexible-price
level (x = 0) and inflation is on target (π = 0). In fact, as Figure 1 shows, this is the only steady
state in the RANK limit or when risk is acyclical. In this case, the long-run IS curve is depicted by
the horizontal dashed-blue curve and only intersects the π̇ = 0−nullcline at the targeted steady state.
However, when risk is countercyclical (Θ > 0), the long-run IS curve intersects the π̇ = 0−nullcline
twice, implying that an additional untargeted steady state emerges (see Appendix B.3 for a proof).
As we discuss next, whether output is above or below its level in the targeted steady state in this
untargeted steady state depends on how aggressive monetary policy is (magnitude of ϕπ).
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(a) 1 ≤ ϕπ < φ(Θ) (b) ϕπ = φ(Θ) (c) ϕπ > φ(Θ)

Figure 1: Multiple steady states with Θ > 0

The emergence of the second steady state is rooted in the fact that, with countercyclical risk, house-
holds face greater risk when output is lower. Let’s start by considering the case with 1 < ϕπ < φ(Θ)

(depicted graphically in Figure 1a). In this case, the untargeted steady state features a positive output-
gap x > 0, and above-target inflation π > 0. To see why such a steady state emerges, suppose that
households believe that the economy will have higher output, x > 0, forever. Because risk is coun-
tercyclical, this belief about higher output also implies that households perceive that they face lower
income risk. This causes them to reduce their precautionary savings demand and to increase con-
sumption spending. Owing to the presence of nominal rigidities, this higher spending puts upward
pressure on output and inflation. When 1 < ϕπ < φ(Θ), the monetary policy rule (6) raises nominal
rates in response to the higher inflation, but the implied increase in real interest rates is not sufficient
to dissipate this higher demand, thus allowing the beliefs of higher output to become self-fulfilling.

Raising ϕπ towards φ(Θ) induces a larger increase in nominal and hence real interest rates. The
higher real rate lowers output in the second steady state, bringing x closer to 0. Graphically, a higher
ϕπ shifts the solid-blue long run IS curve lower and makes the untargeted steady state shift lower down
on the π̇ = 0-nullcline, closer to (0, 0). In fact, as one increases ϕπ all the way to φ(Θ), the long run IS
curve becomes tangent to the π̇ = 0-nullcine at the targeted steady state. This is depicted graphically
in Figure 1b. In this knife-edge case, the only steady state is the targeted steady state x = π = 0.

Increasing ϕπ even further (ϕπ > φ(Θ)), shifts the long-run IS curve down further (depicted in
Figure 1c), and multiple steady states emerge again. The untargeted steady state now features lower
output x < 0 and below target inflation π < 0. With countercyclical risk, lower output (x < 0)
implies that households face more risk in this steady state compared to the targeted steady state,
prompting them to increase their precautionary savings. This causes them to lower spending, which
puts downward pressure on output and inflation. Monetary policy, following the rule (6), lowers
the nominal rate in response to the lower inflation, but despite this, the equilibrium real interest rate
remains too high to discourage the higher precautionary savings. This reinforces lower household
demand, trapping the economy at a lower level of economic activity x < 0. Appendix B.3 shows that
this untargeted steady state persists even if we keep raising ϕπ further (as long as it remains finite).
Increasing ϕπ further only has the effect of making output in the untargeted steady state even lower.

While the discussion above show that in our HANK economy with countercyclical risk, the untar-
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geted steady state can feature output which is higher, lower or equal to that in the targeted steady
state, in what follows, we will focus on the scenario in which the targeted steady state is locally determi-
nate. As we show in Section 3, this requires that ϕπ > φ(Θ), implying that the untargeted steady state
always exists and features lower output and inflation than in the targeted steady state (Figure 1c).

3 Local vs global determinacy of equilibrium

In order to distinguish between local and global determinacy, it is helpful to rewrite (16a)-(16b) as:[
ẋt

π̇t

]
= A

[
xt

πt

]
︸ ︷︷ ︸
first-order

terms

+

[
σ∑∞

s=2(−1)s γsΘs

s! xs

−κ ∑∞
s=2

1
s! x

s

]
︸ ︷︷ ︸

higher-order
terms

with A =

[
−σγΘ ϕπ − 1
−κ ρ

]
, (17)

Rewriting (16a)-(16b) in this way highlights that the dynamics of (xt, πt) local to the targeted steady
state (0, 0) are dominated by the first-order terms, while the higher-order terms dominate the dynamics
when the economy is further away from the targeted steady state.

Local determinacy requires that any trajectory, other that (xt, πt) = (0, 0), that starts in a small
neighborhood of the targeted-steady state (0, 0) leaves this neighborhood, i.e., all these trajectories do
not remain bounded inside this neighborhood. The only trajectory that stays bounded in this neighbor-
hood is (xt, πt) = (0, 0), implying that (0, 0) is the unique bounded equilibrium in its neighborhood.
In other words, if one limits analysis to rational expectations equilibria in which (x, π) remain for-
ever in a small neighborhood of the targeted-steady state (0, 0), then the only bounded equilibrium is
(0, 0). Since the first-order terms dominate the behavior of xt, πt in this small neighborhood around
the targeted steady state, whether the economy is locally determinate around the targeted steady state
depends on the eigenvalues of the matrix A. In particular, we need both eigenvalues of A to explosive,
i.e., they have positive real parts. Proposition 2 formally describes when this is the case.

Proposition 2 (Local determinacy in HANK with countercyclical risk). The targeted equilibrium of the
economy described by (16a)-(16b) is locally determinate if ϕπ satisfies

ϕπ > φ(Θ) where φ(Θ) = 1 +
ρσγΘ

κ
, (18)

provided that risk is not too countercyclical Θ ∈ [0, Θ⋆), where Θ⋆ ≡ ρ
σγ . If Θ > Θ⋆, then the targeted

equilibrium is locally indeterminate for any finite ϕπ, no matter how large it is.

Proof. See Appendix B.2.

Equation (18) is the analog of the “cyclical-risk” augmented Taylor principle derived in Acharya
and Dogra (2020), Auclert et al. (2023) and Bilbiie (2024), in the context of our model, and states that as
long as risk is not too countercyclical, a large enough ϕπ which satisfies (18) ensures local determinacy.
This condition simplifies to the standard Taylor principle ϕπ > 1 in the RANK limit of our model
(σ = 0) and also when households face risk (σ > 0), but this risk is acyclical (Θ = 0). However, when
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risk is countercyclical Θ > 0, (18) shows that monetary policy needs to respond more aggressively to
changes in inflation, the more countercyclical risk is.

To see why a larger ϕπ is needed to ensure local determinacy with countercyclical risk, it is useful to
first understand why ϕπ > 1 ensures local determinacy in RANK. As Cochrane (2011) explains: absent
the ZLB, the Taylor principle ensures a unique bounded equilibrium in RANK, because off-equilibrium,
“higher inflation leads the Fed to set interest rates in a way that produces even higher future inflation”. In other
words, imposing the Taylor principle induces explosive dynamics if the economy is not on the targeted
equilibrium, thus leaving the targeted equilibrium as the unique bounded equilibrium in RANK. To see
this in our model, imposing the RANK limit σ = 0 in (16a), the IS curve is given by:

ẋt = (ϕπ − 1)πt

With ϕπ > 1, the expression above shows that ẋt is increasing in πt, i.e., any deviation of inflation from
its target induces destabilizing dynamics, causing x to change. For example, consider a case in which
inflation is below target at date 0, π < 0. Then, if ϕπ > 1, the IS curve (16a) implies that xt must
decline. Since the Phillips curve (16b) implies that inflation at any date is the net-present discounted
value of future marginal costs, π falls further below target over time.10 These destabilizing dynamics
induced by the Taylor principle ensure that any trajectory which originates at any point other than
(0, 0) does not remain bounded, and hence is not a valid equilibrium. In fact, the larger is ϕπ relative
to 1, the more destabilizing these dynamics are. Consequently, (x, π) = (0, 0) is the only locally bounded
equilibrium in RANK if the Taylor principle is satisfied.

In contrast, when risk is countercyclical, the IS equation (16a) can be written as:

ẋ = (ϕπ − 1)π − σγΘx︸ ︷︷ ︸
first-order terms

+higher-order terms, (19)

and since local determinacy depends on the behavior of (x, π) local to the targeted steady state (0, 0),
only the first-order terms of the IS curve matter for local determinacy. When ϕπ > 1, the first linear-
term on the right-hand-side (RHS) of (19) still induces destabilizing dynamics as in RANK. However,
in HANK with countercyclical risk, Θ > 0, the natural rate r⋆(x) endogenously co-moves with x. This is
reflected in the extra first-order term −σγΘx on the RHS, which induces stabilizing dynamics because
the coefficient on x is negative: a positive x causes ẋ to become negative, i.e., it causes x to return to 0,
given all else. Thus, when risk is countercyclical, ϕπ need to be larger so that the destabilizing effect
overwhelms this stabilizing effect. The cyclical-risk augmented Taylor principle (18) states how large
ϕπ needs to be for this to be the case. Since this stabilizing force is not present in RANK or in HANK
with acyclical risk, ϕπ > 1 suffices.

Global determinacy is more demanding than local determinacy as it requires that any trajectory,

10Output declines following date 0 unambiguously, but whether it declines monotonically over time or not depends on the
eigenvalues of the system. While the Taylor principle ensures that the 2 eigenvalues are positive, the eigenvalues can either
both be real or both complex with positive real parts. When the eigenvalues are real, x continues to decline monotonically
towards −∞, while if the two roots are complex, the trajectory of x is oscillatory with ever increasing amplitude. However, in
both cases, as long as the Taylor principle is satisfied, the trajectory for x diverges away from its targeted level of 0 over time.
Whether inflation diverges from its targeted level monotonically or in an oscillatory fashion depends on whether output
declines monotonically or diverges in an oscillatory fashion, which in turn depends on the eigenvalues of the system.
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starting at any (x, π) ∈ (−∞, ∞)2 other than (x, π) = (0, 0), does not remain bounded. Thus, global
determinacy does not just depend on the behavior of x, π local to the targeted steady state. Conse-
quently global determinacy depends not just on the first-order terms but also the higher-order terms
in (17). In linear models, local determinacy implies global determinacy as there are no higher-order
terms when the model is actually linear. However, in non-linear models local determinacy need not im-
ply global determinacy. This is because local determinacy only ensures that the trajectories starting in
small neighborhood of the targeted equilibrium diverge away from this equilibrium. It, however, does
not ensure that once this trajectory takes the economy further away from the targeted equilibrium, that
the higher-order terms prevent this trajectory from growing unbounded. Thus, when one concludes
that the equilibrium is unique in a non-linear model by checking for local determinacy, one is im-
plicitly making an assumption that a trajectory which initially diverges from the targeted equilibrium
eventually becomes unbounded. However, this assumption may not hold.

Even though our model economy is non-linear in RANK limit (σ = 0) or in the acyclical risk case
(σ > 0, Θ = 0), Appendix B.1 shows that the standard Taylor principle ϕπ > 1, which ensures that
the targeted equilibrium is locally determinate, also ensures that it is globally determinate.11 This is
because in the RANK limit or in HANK with acyclical risk, the IS curve does not have any higher-order
terms. When risk is countercyclical, ϕπ > φ(Θ) still ensures that local to (0, 0), the economy features
explosive dynamics.12 Thus, while ϕπ > φ(Θ) ensures that the first-order terms in (19) induce explosive
dynamics, it cannot guarantee that the higher-order terms also do so. In fact, as we discuss next, in our
HANK economy with countercyclical risk, these higher-order terms induce a stabilizing force which
cannot be overwhelmed no matter how large ϕπ is. Consequently, there exists multiple trajectories
{xt, πt}t≥0 which satisfy all equilibrium conditions and remain bounded, i.e., multiple equilibria exist,
implying that there is global indeterminacy. This is formalized in Proposition 3 below.

Proposition 3 (Global Indeterminacy with countercyclical risk). Consider the economy described in Propo-
sition 1 for any Θ > 0 and assume that ϕπ > φ(Θ). Then for any Θ > 0, the equilibrium is globally
indeterminate, no matter how large ϕπ is (as long as it is finite).

Proof. See Appendix B.5.

The existence of multiple equilibria opens the door to self-fulfilling beliefs which can drive non-
fundamental fluctuations, and can even lead output and inflation to permanently deviate from the
targeted steady state. The easiest way to see that multiple equilibria exist is to recall from section
2.4 that when risk is countercyclical, an untargeted steady state (which features a lower level of eco-
nomic activity), exists alongside the targeted steady state. Thus, there are at least two trajectories,
{xt, πt}t>0 = (0, 0) and {xt, πt}t>0 = (x, π), which satisfy all equilibrium conditions and remain
bounded, implying that we have global indeterminacy. Even absent the ELB, households’ pessimistic
self-fulfilling beliefs can cause the HANK economy with countercyclical risk to jump from the targeted

11Of course, global determinacy would not obtain if we enforced an ELB since Benhabib et al. (2001b) show that imposing
an ELB introduces multiple bounded trajectories which are consistent with equilibrium, implying that there can be global
indeterminacy even when the target equilibrium is locally determinate. As aforementioned, we purposely do not impose an
ELB to highlight that multiplicity of equilibria can emerge in HANK models even absent the ELB.

12This is true if risk is not too countercyclical: Θ ∈ (0, Θ⋆). Proposition 2 already shows that when Θ > Θ⋆, no matter how
large ϕπ is, monetary policy cannot induce destabilizing dynamics if the economy strays from the targeted equilibrium.
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to the untargeted steady state. While this is reminiscent of the secular stagnation literature,13 which
showed that the economy can get stuck at low levels of economic activity because monetary policy is
stuck at the ELB, our HANK economy stagnates not because of a binding ELB, but because monetary
policy fails to fully account for the endogenously lower natural rate.

However the hazards induced by the inflation targeting rule (6) in our HANK economy are not
limited to such permanent slumps. Appendix B.5 shows that the inability of monetary policy to
fully account for endogenous fluctuations in the natural rate can also lead to other, less abrupt, non-
fundamental fluctuations, the precise form of which depends on how countercyclical risk is. In partic-
ular, the global dynamics of our economy can be divided into three regimes, which we label (i) mildly
countercyclical , (ii) moderately countercyclical and (iii) highly countercyclical. Formally, we deem risk
to be highly countercyclical if Θ > Θ⋆, where Θ⋆ = ρ/σγ is the same as in Proposition 2. Risk is said
to be moderately countercyclical if Θ ∈ (Θ⋄, Θ⋆), where the threshold Θ⋄ lies between 0 and Θ⋆, and is
described in Appendix B.5. Finally, we call risk mildly countercyclical when Θ ∈ (0, Θ⋄). Proposition
2 already shows that if risk is highly countercyclical, even with ϕπ > φ(Θ), the targeted equilibrium
is locally indeterminate, and thus also globally indeterminate. Thus, in our discussion below, we only
focus on the cases in which risk is mildly and moderately countercyclical.
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(a) acyclical risk and RANK: (Θ = 0 or σ = 0)
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(b) moderately countercyclical risk (Θ⋄ < Θ < Θ⋆)

Figure 2: Phase portraits with acyclical risk and countercyclical risk. In both panels, the dotted curve
depicts the π̇ = 0-nullcline, while the dash-dotted curve depicts the ẋ = 0-nullcline. In panel (a), the
gray solid trajectory depicts a representative trajectory which originates near (0, 0) and then grows
unbounded. In panel (b), the gray solid trajectory depicts a representative trajectory which originates
near (0, 0) and then converges to the stable cycle, which is depicted by the black solid trajectory. Both
panels utilize the calibration described in Section 3.1.

When risk is mildly or moderately countercyclical, (18) ensures that the targeted steady state equi-
librium is locally determinate. Consequently, any trajectory which starts in the neighborhood of (0, 0)
initially diverges away from the targeted steady state. However, as Appendix B.5 shows, not all these
initially divergent trajectories grow unbounded eventually. In particular, when risk is mildly coun-
tercyclical Θ ∈ (0, Θ⋄), the stabilizing influence of the higher-order terms ensures that there exists
a saddle-connection along which the economy can transition from the neighborhood of the targeted

13See, e.g., Benigno and Fornaro (2018); Eggertsson et al. (2019).
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steady state to the untargeted steady state and thus remain bounded. Furthermore, any trajectory
which originates on this saddle connection also remains bounded. Similarly, when risk is moderately
countercyclical, (18) still ensures that the first-order terms cause any trajectory which starts in the
neighborhood of (0, 0) to initially diverges away from the targeted steady state (depicted by the gray
trajectory in Figure 2b). However, Appendix B.5 shows that none of these initially divergent trajectories
grow unbounded as the higher-order terms push back towards the targeted steady state. Consequently,
these trajectories converge to a stable-limit cycle (depicted by the black trajectory in Figure 2b). This
shows that even a small shock which dislodges the economy from the targeted steady state can cause
the economy to get stuck in a cycle in which the output-gap and inflation are permanently away from
their targeted values. In contrast, in the RANK limit of our model (σ = 0) or if risk is acyclical (Θ = 0),
the absence of non-linear terms in the IS equation implies that even with the standard inflation tar-
geting rule (6), the targeted equilibrium (xt, πt) = (0, 0) for all t is the only bounded trajectory which
satisfies all equilibrium conditions. This is depicted in Figure 2a, which plots a trajectory starting away
from (0, 0), and shows that it diverges away from the targeted equilibrium and eventually becomes
unbounded. Figure 2 only depicts the dynamics in the acyclical risk and moderately countercyclical
cases, but Figure 4 in Appendix B.5 describes global dynamics for all values of Θ.

It is useful to point out that, because our baseline model does not feature any predetermined vari-
ables, simply the existence of the untargeted steady state (even without characterizing these additional
non-fundamental dynamics) is sufficient to establish global indeterminacy. This is because, absent any
predetermined variable, the economy can just jump from one steady state to another. However, our
characterization of the complete set of possible non-fundamental fluctuations is more than a theoretical
curiosity. This is because, in Section 4, when we discuss policy design to ensure global determinacy,
it will be important to design a rule which can eliminate all non-fundamental fluctuations, and not
just the untargeted steady state. In particular, we show that simple policies which are designed to
only eliminate the untargeted steady state, may fail to eliminate the stable cycle which surrounds the
targeted steady state. Consequently, even absent an untargeted steady state, the equilibrium is globally
indeterminate because any trajectory starting in the neighborhood of the targeted steady state initially
diverges but then converges to the stable cycle, hence remaining bounded.

Moreover, our characterization above helps demonstrate that our findings in the baseline model are
robust to when we extend the model to include predetermined variables. Since our baseline model has
no predetermined variables, the economy can stochastically jump not just between the targeted steady
state and the untargeted steady state, but also between the cyclical trajectories described above in re-
sponse to sunspot shocks. However, such jumps are not possible if the model includes a once a prede-
termined variable. To show that our characterization of global indeterminacy is robust to the inclusion
of predetermined variables, in Appendix E.5, we relax the assumption that the fraction of ξl house-
holds remains constant. Despite this change, an untargeted steady state with lower economic activity
as well as a higher fraction of ξl households exists in this extension as long as risk is countercyclical.
However, simply the existence of an untargeted steady state no longer implies global indeterminacy
since the fraction of ξl households at any date is predetermined, and thus cannot jump. Despite this
caveat, Appendix E.5 shows that we still have global indeterminacy. In fact, the additional bounded
trajectories resemble those described in our baseline model. For example, when risk is mildly counter-
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cyclical, there exists a saddle connection along which the economy can transition from near the targeted
steady state to the untargeted steady state. The economy can no longer instantaneously jump from
one steady state to another: the transition features a gradual increase in the fraction of ξl households
alongside a gradual decline in output and inflation. Similarly, when risk is moderately countercyclical,
there exists a stable cycle which surrounds the targeted steady state. Appendix E.5 shows that any
trajectory starting in the neighborhood of the targeted steady state eventually converges to the stable
cycle and remains bounded. Unlike in our baseline model, where the economy could instantaneously
jump onto the stable cycle, this transition to the stable cycle is also gradual since the fraction of ξl

households cannot jump.14

3.1 A quantitative perspective on global indeterminacy

While Proposition 3 and the subsequent exposition make clear that the HANK economy with counter-
cyclical risk features global indeterminacy, it is still useful to focus our discussion around the empiri-
cally relevant range of Θ. To do so, we calibrate our model to highlight what form global indeterminacy
can take once we impose some discipline on the parameters.

Calibration In our preferred calibration, we set the discount rate ρ to be consistent with a real
interest rate of 4% in steady state. We set the coefficient of relative risk aversion γ−1 = 2. We set the
rate at which ξh households transition to ξl productivity λl = 0.013 based on the estimates of Bilbiie,
Primiceri and Tambalotti (2023).15 Translating their estimates of into continuous time yields a range
for Θ between 21.98 and 29.9, with the modal estimate of 28.1. To calibrate the relative differences in
idiosyncratic productivity ξh/ξl , we use estimates of the decline in consumption when a household
transitions from employment to unemployment. In particular, we set ch/cl = 1.1, which is consistent
with the empirical estimates of the decline in consumption when a household experiences involuntary
unemployment.16 Equation (12), then implies that ξh/ξl = 1.23. Finally, as is common in the literature,
we set ϕπ = 1.5.

14We also introduce predetermined variables to our baseline model in two other ways. First, when we study a backward-
looking rule in Appendix E.2, a weighted average of inflation in the past acts as a predetermined variable. Since this
lagged inflation measure is predetermined and cannot jump, the existence of the untargeted steady state per se does not
imply global indeterminacy. However, Appendix E.2 shows that we still have global indeterminacy and depending on how
backward looking the rule is, the additional bounded trajectories take the form of a saddle connection or a stable cycle
to which trajectories starting near the targeted steady state converge. Second, we introduce government debt (see Section
4.2). Even with government debt as a predetermined variable, Appendix D.1 shows that the determinacy properties of the
economy with government debt mirrors that in our baseline economy, except that the economy can no longer jump between
the two steady states. Again, depending on how countercyclical risk is, the additional bounded trajectories take the form of
a saddle connection or a stable cycle.

15Bilbiie, Primiceri and Tambalotti (2023) postulate that the probability that a unconstrained household stays unconstrained
is given by ln st = ln s0 + s1 ln yt. We translate the probability 1 − st into an arrival rate by using the conversion formula
1 − st = 1 − e−λl,t , which can be simplified to yield ln st = −λly

−Θ
t . Imposing steady state yt = 1, where st = s0 and λt = λl ,

we can set λl = − ln s0 and d ln λ
d ln y = s1 = −λlΘ. Bilbiie et al. (2023) set s0 = 0.987 and estimate s1 to lie in the range 0.2880

and 0.3920, which implies λl = 0.0131 and Θ ∈ [21.98, 29.9].
16A 10% decline in consumption is well within the range of empirical estimates, e.g., Cochrane (1991) finds that the

consumption growth of households who lost their job was 24-27% lower than households who did not, Ganong and Noel
(2019) find that the consumption of households who become unemployed drops by around 11% when unemployment benefits
expire, while Gruber (1997) documents that food consumption falls on average by 6.8% after households become unemployed.
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Given this calibration, we can now compute the boundaries of the mildly, moderately and highly
countercyclical regions. While it is not possible to analytically characterize the value of Θ⋄, our cal-
ibrated model features Θ⋄ ≈ 15.8, while Θ⋆ = 31.08. Thus, the mildly procyclical risk region corre-
sponds to Θ ∈ (0, 15.8), the moderately countercyclical region corresponds to Θ ∈ (15.8, 31.08) and
the highly countercyclical region features Θ > 31.08. Using the estimates of Θ from Bilbiie, Primiceri
and Tambalotti (2023) which lie in the range Θ ∈ (21.98, 29.9), with a modal estimate of Θ = 28.1, one
can see that these estimates comfortably lie within the moderately countercyclical region of the parameter
space. The characterization above showed that when risk is moderately countercyclical, in addition
to stagnating at the untargeted steady state, the economy can also get stuck in a cycle and remain
permanently away from the targeted steady state. In Figure 2b –which is plotted with Θ = 28.1– the
untargeted steady state features a level of output which is about 6.5 percent lower than in the targeted
steady state. While this constitutes a considerably large output-gap, it is comparable to output-gap
estimates in the U.S. and the Euro area following the Great Recession (see, e.g. Summers (2016);
Jarociński and Lenza (2018)). Furthermore, as discussed earlier, in addition to this large decline in
economic activity, self-fulfilling fluctuations can also generate smaller cyclical fluctuations: the stable
cycle which surrounds the targeted steady state features output-gap fluctuations with an amplitude of
approximately ± 2.5 percent around the targeted steady state, which is comparable in magnitude to
cyclical fluctuations in the U.S. In fact, Beaudry et al. (2020) argue that these deterministic boom-bust
cycles account for a substantial part of U.S. business cycle fluctuations. Overall, the analysis above
underscores the fact that under a standard Taylor rule, our HANK economy with countercyclical risk
is susceptible to self-fulfilling fluctuations with non-fundamental fluctuations of plausible magnitudes.

3.2 Other policy rules

While the analysis in Section 3 is based on a inflation targeting Taylor rule, our conclusions are robust
to other standard monetary policy rules which have been studied in the RANK literature studying
local determinacy. This literature has found that compared to purely inflation targeting rules, rules
which allow the policy rates to display inertial behavior, or to also respond to output-gap fluctuations
make local determinacy more likely in RANK economies. Appendix E.1 studies the determinacy
properties of our economy with the monetary policy rule it = ϕππt + ϕxxt, while Appendix E.2 studies
the case in which the policy rate exhibits inertial behavior. In particular, it considers a rule dit/dt =

α
[
it − r − ϕππt

]
, where a smaller α implies a more backward-looking rule. These appendices show

that, while a large enough ϕx and/or a sufficiently backward-looking rule (small enough α) also make
local determinacy more likely in our HANK economy with countercyclical risk, they cannot eliminate
global indeterminacy. In fact, Appendix E.1 shows that for any finite combination of (ϕπ, ϕx) (no matter
how large), the equilibrium is still globally indeterminate in our HANK economy with countercyclical
risk. Similarly, Appendix E.2 shows that no matter how backward-looking the rule is (however small α

is), the equilibrium is globally indeterminate as long as risk is countercyclical.
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3.3 A more general specification of countercyclical risk

In our baseline model, we have modeled countercyclical risk by assuming that transition rate at which
a ξh household switches to ξl depends on whether output is above or below its level in the targeted
steady state: λl,t = λl · y−Θ

t . Appendix E.4 shows that our characterization of global indeterminacy in
our HANK model with countercyclical risk does not rely on this precise functional form. In particular,
Appendix E.4 considers the case in which the transition rate λl,t is given by:17

λl,t = λl · Λ(ln yt) = λl · Λ(γxt) ≥ 0,

where Λ(·) is any analytic function which takes non-negative values, and is weakly decreasing in x.18

Furthermore, in order to make our analysis comparable with the baseline model, we also make two
additional normalizations. First, we normalize Λ(0) = 1, so that the targeted steady state is the same
as in our baseline model with y = 1(x = 0) and π = 0. This also ensures that the transition rate from
ξh to ξl in the targeted steady state is given by the constant λl like in our baseline model. Second, we
parametrize Λ(x) such that Λ′(0) = −Θ < 0, i.e., the parameter Θ now only captures the cyclicality of
risk local to the targeted steady state.

Appendix E.4 shows that our results from the baseline results continue to hold under fairly non-
restrictive conditions. In particular, our characterization of global indeterminacy in the form of a
stable cycle surrounding the targeted steady state still holds as long as Λ(·) is sufficiently convex in
x. Intuitively, this means that a 1 percentage point fall in output increases “risk” (the rate at which ξh

transitions to ξl) more than a 1 percentage point increase in output reduces risk. Appendix E.4 also
shows that the convexity of Λ(·) guarantees the existence of the untargeted steady state. However,
Appendix E.4 shows that the untargeted steady state exists even if Λ(·) is linear. While the model is
obviously stylized, there are a few reasons to think why Λ(·) may be convex. The easiest way to see
this is to start by considering very large fluctuations in output. Since Λ(·) is bounded below by zero,
but it is unbounded above, the function must be convex at least as y become large. More generally,
if we interpret the state ξh as employment and ξl as unemployment, then Λ(·) is proportional to the
inflow rate into unemployment. Empirically, this rate increases sharply (relative to a simple linear trend)
in recessions (i.e., episodes where y falls), but does not decrease sharply in expansions (see, for e.g.,
Figure 1 of Crump et al. (2019)). Furthermore, the business cycle asymmetries in these labor market
flow variables, which we have argued are a proxy for idiosyncratic risk faced by households, are more
pronounced than the asymmetries, if any, of log GDP (see, e.g., McKay and Reis (2008)). Thus, it is not
merely the case that risk is asymmetric over the business cycle because GDP is asymmetric. Rather, if
we interpret these cyclicalities in terms of a functional relation between risk and GDP (both measured
relative to trend), risk is a convex, decreasing function of (detrended) log GDP. Finally, the convexity of
Λ(·) is broadly consistent with the anecdotal observation that recessions are periods when households’
perception of idiosyncratic risk is extremely high, but expansions are not periods when idiosyncratic
risk is extremely low, at least not to the same extent.

17This specification implies that the first-derivative of Λ(·) with respect to y measures how much the transition rate λl,t
changes in response to a 1% increase in output.

18Λ(·) must be non-negative since it is a component of a transition rate. The assumption that the function is also weakly
decreasing is meant to capture the idea that risk is countercyclical: risk is weakly higher when x is lower.
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Appendix E.4 also shows that the untargeted steady state exists under even more general condi-
tions. Appendix E.4 shows that while the convexity of Λ(·) is sufficient to guarantee the existence of
the untargeted steady state, it also exists even if Λ(γx) is linear in x. Thus, our characterization of
globally indeterminacy in our HANK economy with countercyclical risk does not rely on the choice of
the precise functional form of λl,t specified in equation (2).

Finally, it is worth pointing out that the conditions which guarantee the existence of the stable
cycle and the untargeted steady state do not depend on how idiosyncratic risk depends on economic
activity far from steady state. This is reassuring because the empirical literature which studies how
idiosyncratic risk varies with the business cycle is quite new, and we have only a weak understanding
of the connection between the business cycle and idiosyncratic risk. Appendix E.4 shows that these
conditions only rely on the behavior of Λ(γx) local to x = 0. In particular, the earlier condition which
required that Λ(·) be convex for the existence of the stable cycle only needs to be satisfied locally
at x = 0. In other words, the existence of the cycle only requires that Λ′′(0) is sufficiently positive
and does not require any additional restrictions on the behavior of Λ(·) for any x ̸= 0. Similarly, the
existence of the untargeted steady state only requires that risk is countercyclical local to the targeted
steady state, i.e, if −Λ′(0) = Θ > 0.19

4 Policy design to eliminate self-fulfilling fluctuations

Our analysis has shown that standard monetary policy rules cannot guarantee global determinacy in
our HANK economy with countercyclical risk. The key force generating this indeterminacy is that
in our economy, the natural rate r⋆(x) is endogenous and co-moves with output, and this opens the
economy up to the possibility of self-fulfilling fluctuations. In other words, since standard monetary
policy rules fail to fully account for endogenous fluctuations in the natural rate, they leave the economy
susceptible to “endogenous demand shocks”. To see why, suppose that ξh households believe that the
economy is going to enter a recession, and consequently they face a higher probability of transitioning
to the ξl state. Holding all else constant, this increases households’ desired precautionary savings
demand, pushing down the natural rate. If monetary policy does not respond sufficiently to this
downward movement in r⋆(x), the real interest rate is higher than the natural rate r > r⋆, incentivizing
households to reduce spending. This can be seen via IS curve (14), which show that when rt > r⋆t ,
output (gap) growth is positive: ẋ = ẏ/y > 0. In other words, given that rt > r⋆t , households reduce
their current consumption, and because of nominal rigidities, this results in lower output, rendering
the initial belief self-fulfilling. This acts as a negative endogenous demand shock. We now study policy
design which can neutralize these endogenous demand shocks.

4.1 Monetary policy

As discussed above, standard monetary policy rules are unable to prevent endogenous demand shocks
from causing fluctuations in the natural rate r⋆(x). A simple monetary policy rule which addresses

19While the existence of the cycle and untargeted steady state is guaranteed by the behavior of Λ(·) local to the targeted
steady state, the magnitude and periodicity of the stable cycle also depend on the shape of the Λ(·) away from x = 0.
Similarly, how low output is in the untargeted steady state also depends on the actual shape of Λ(·) away from x = 0.
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this shortcoming can be written as:

it = r + ϕππt + ϕr

(
r⋆(xt)− r

)
(20)

The key change in a policy rule (20) relative to (6), is that monetary policy now also adjusts the nominal
rate in response to endogenous demand shocks which result in deviations of the natural rate r⋆(x) from
its steady state value of r.

To see how this policy response can eliminate self-fulfilling fluctuations, as before, suppose that ξh

households believe that the economy is going to enter a recession, and consequently they face a higher
probability of transitioning to the ξl state. Holding all else constant, this increases households’ desired
precautionary savings demand, pushing down the natural rate r⋆. However, monetary policy now cuts
the nominal rate in response to this lower natural rate. In fact, when ϕr ≥ 1, monetary policy lowers the
policy rate by at least one-for-one with r⋆(x). The resulting lower real interest rate undoes the desire to
increase precautionary savings, leaving current spending unchanged. Since households do not reduce
current consumption, lower output cannot be supported in equilibrium. Hence the initial beliefs about
the economy entering a recession cannot be self-fulfilling, and the economy remains at the targeted
steady state. Thus, by responding to endogenous fluctuations in r⋆(x) sufficiently strongly, monetary
policy neutralizes the endogenous demand shock. Analogous to the standard Taylor principle which
rules out self-fulfilling fluctuations in RANK, a sufficiently strong response to endogenous fluctuations
in r⋆(y) discourages self-fulfilling beliefs from taking root in our HANK economy with countercyclical
risk. In this sense, it can be thought of as a Taylor principle, but for natural rates. This off-equilibrium
commitment to adjust monetary policy ensures that beliefs about higher or lower output cannot be
self-fulfilling. Thus, if monetary policy follows the policy rule (20), even though r⋆(x) can deviate from
r, such deviations do not manifest on-equilibrium. This idea is formalized in Proposition 4.

Proposition 4. Suppose that monetary policy is described by (20). Then, for any Θ > 0, the targeted equilibrium
is globally determinate as long as ϕπ > 1 and ϕr ≥ 1.

Proof. See Appendix C.

Figure 3a depicts the phase portrait under the monetary policy rule (20) with ϕr > 1. The key
difference induced by the commitment of monetary policy to respond to any possible fluctuations in
r⋆(x) is that, unlike with the standard inflation targeting rule, the long run IS curve (the ẋ = 0-nullcline)
is now downward sloping. Consequently, the ẋ = 0-nullcline and the π̇ = 0-nullcline intersect only once
at the targeted steady state, implying that this policy rule does not allow the economy to stagnate at an
untargeted steady state with below target inflation and output. Moreover, this commitment to respond
to any possible fluctuations in r⋆(x) also eliminates the stable cycle and any trajectory starting away
from the targeted equilibrium (x, π) = (0, 0) diverges and grows unbounded (as depicted by the gray
trajectory in Figure 3a).

Endogenous vs exogenous demand shocks. The reason why the policy rule (20) neutralizes en-
dogenous demand shocks is analogous to the optimal monetary response to exogenous demand shocks,
which has been studied extensively in the RANK literature. This is easiest to see by setting ϕr = 1
in (20). In this special case, the rule stipulates that holding all else constant, the nominal rate should
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Figure 3: Phase portraits with acyclical risk and countercyclical risk. In both panels, the dotted curve
depicts the π̇ = 0-nullcline, while the dash-dotted curve depicts the ẋ = 0-nullcline. In panel (a), the
gray solid trajectory depicts a representative trajectory which originates near (0, 0) and then grows
unbounded. In panel (b), the gray solid trajectory depicts a representative trajectory which originates
near (0, 0) and then converges to the stable cycle, which is depicted by the black solid trajectory.

perfectly track any fluctuations in the natural rate r⋆(x):

it = r⋆(xt) + ϕππt (21)

This idea is analogous to the optimal response to exogenous demand shocks in the RANK literature.
As is well known from RANK, exogenous demand shocks cause fluctuations in the flexible-price real
interest rate.20 In order to neutralize the effect of these exogenous demand shocks on output and
inflation, monetary policy should set the nominal rate to perfectly track the flexible-price real interest
rate (Galı́, 2015). In a similar vein, (21) shows that monetary policy can neutralize endogenous demand
shocks if the nominal rate tracks the resulting endogenous fluctuations in the natural rate r⋆(x).21

Is eliminating the untargeted steady state sufficient? It is worth noting that while the policy rule
(20) eliminates both the untargeted steady state and the stable cycle, it is generally not the case that
any policy which eliminates the untargeted steady state, necessarily eliminates the stable cycle as well.
Figure 3b depicts such a case in which monetary policy follows the simple inflation targeting Taylor

20Since our baseline model abstracts from aggregate shocks, the flexible-price real interest rate rt = r is constant. More
generally, the it would change over time in response to exogenous demand shocks, e.g., a shock to the discount rate ρt. But
importantly, even when it is time-varying, it does not depend endogenously on the level of output.

21The specification of monetary policy in (21) is also closely related to the robust real interest rate rule of Holden (2024).
Holden (2024) shows that a monetary policy rule of the form it = rt + ϕππt, where rt denotes the actual real interest rate, can
deliver a determinate equilibrium in a large class of monetary economies. In fact, it would also deliver a globally determinate
equilibrium in our HANK economy with countercyclical risk. To see this, notice that using the IS curve (14), the real interest
rate in our economy can be written as rt = r⋆(xt) + ẋt, and so the robust real interest rate rule of Holden (2024) can be
rewritten as it = r⋆(xt) + ẋt + ϕππt. This formulation makes it clear that such a rule also delivers global determinacy as
it also stipulates that, holding all else constant, the nominal rate should be adjusted to track any potential endogenous
fluctuations in the natural rate r⋆(y). However, this rule is not exactly the same as (21), since it requires the nominal interest
rate to respond not just to off-equilibrium fluctuations in r⋆(xt), but additionally to off-equilibrium fluctuations in ẋt as well.
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rule (6) as long as output and inflation stay close enough to the targeted steady state, but switches to
a strict inflation targeting regime, setting πt = 0 at all subsequent dates, if output falls below some
threshold level x̃. This formulation of monetary policy is reminiscent of the commonly studied escape
clause, where deviations of inflation and output outside a specified range prompt the policymaker to
depart from a simple linear rule in favor of a policy that directly restores inflation and output to the
monitoring range (see, e.g., Christiano and Takahashi (2018)). Figure 3b plots the dynamics under
such a rule with x̃ = −0.1.22 Such a policy stance implies that for x ≥ x̃, the IS curve is the same
as under our baseline, but if x < x̃, the ẋ = 0-nullcline jumps up to the πt = 0 line. Consequently,
as long as x̃ > x (where x denotes the output in the untargeted steady state for a given Θ and ϕπ

in our baseline economy), there is only one intersection between the ẋ = 0-nullcline and the π̇ = 0-
nullcline, implying that such a policy stance eliminates the untargeted steady state from emerging
in equilibrium (see Appendix C.1 for a proof). However, Figure 3b shows that such a policy stance
does not rule out global indeterminacy as the stable cycle which surrounds the targeted steady state
still exists, and so any trajectory originating in the neighborhood of the targeted steady state initially
diverges (since the targeted steady state is locally determinate) but eventually converges to the stable
cycle, thus remaining bounded. This shows that simple escape clauses (which have often been used as a
means of implementing a unique equilibrium), may eliminate some of the multiple equilibria but not
all of them. This points to the importance of identifying all the forms in which global indeterminacy
manifests (as we did in Section 3), so that one can design policy which neutralizes all of them.

While at first glance, the specification of monetary policy required to eliminate global indetermi-
nacy might seem abstract, the prescriptions do not constitute a large deviation from the way in which
most central banks conduct monetary policy. Following the centrality of inflation expectations for
determinacy in the RANK framework, most central banks vigilantly monitor measures of long-run
inflation expectations and stand ready to tighten policy if inflation expectations start to drift above the
inflation target. In the same way, our HANK economy with countercyclical risk provides a rationale
for central banks to pay equal attention to private sector beliefs about real activity. Just as central
banks monitor and react to inflation expectations, if measures of confidence in the real economy (such
as consumer confidence, households’ perceived probability of job loss etc.) begin to drift down or
up, monetary policy should act aggressively to reverse such beliefs. Simply trying to keep inflation
expectations on target, while ignoring expectations about real activity, can enable self-fulfilling beliefs
which lead to non-fundamental fluctuations in output and inflation.

4.2 Fiscal policy

Next, we study whether the global indeterminacy in our HANK economy can be eliminated using
fiscal policy. One reason to do so follows from the criticism of the Taylor principle in Cochrane (2011),
who argues that the Taylor principle achieves a unique equilibrium by the restricting the definition
of equilibria to those which feature bounded inflation. Cochrane argues that this restriction, which
rules out explosive paths of inflation, is ad-hoc and not based on economic theory. Instead, in the
context of RANK economies, Cochrane argues that non-Ricardian fiscal policy can implement an unique

22 x̃ = −0.1 implies that monetary policy switches to the strict inflation targeting regime setting πt = 0 at all subsequent
dates if output were to decline more than 5% below its targeted level.
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equilibrium without the need for such assumptions. In what follows, we show that such a policy also
eliminates the global indeterminacy in our HANK economy with countercyclical risk.

In order to study non-Ricardian fiscal policy, we introduce government debt into our baseline
economy. With non-zero debt, the government budget constraint in nominal terms can be written as

Ḃt = itBt + Pt(g − Tt), (22)

where g denotes government expenditures (we normalize g = 0 for simplicity), and Tt denotes lump
sum taxes/transfers. As is standard, we assume that Tt is determined by the fiscal rule:

Tt = rb⋆ + rϕb(bt − b⋆), (23)

where bt = Bt/Pt denotes the stock of outstanding real government debt at date t, and b⋆ > 0 is the
level of government debt in the targeted steady state,23 and ϕb controls how aggressively the fiscal
authority raises taxes when debt is above its targeted level. Similar to Leeper (1991), we describe fiscal
policy as passive when ϕb > 1 and active when ϕb ∈ (0, 1). As in our baseline model, we assume
that monetary policy is still described by the inflation targeting rule (6). However, unlike the baseline
model, we do not restrict ϕπ > 1. Instead we require ϕπ ≥ 0, which allows for the possibility that the
monetary policy can be passive if ϕπ ∈ [0, 1], and active if ϕπ > 1.

Given our assumption of quasi-linear preferences, Appendix A.3 shows that we can still summarize
household decisions in terms of a single IS curve which is identical to (16a) in the baseline model, and
so, the dynamics of the output-gap, inflation and (real) government debt can then be described by the
IS equation (16a), the Phillips curve (16b) and the government budget constraint (in real terms)

ḃt = (it − πt)bt − Tt, (24)

where it is given by the inflation targeting rule (6) and Tt is given be the fiscal rule (23).

Active Monetary, Passive Fiscal Simply adding government debt to the baseline model does not
eliminate global indeterminacy. As long as fiscal policy is passive (ϕb > 1) and monetary policy is
sufficiently active ϕπ > φ(Θ), the determinacy properties of the economy are the same as those of our
baseline economy. In fact, Appendix D.1 shows that in this setting, if risk is not highly countercyclical
Θ ∈ (0, Θ⋆) and monetary policy is active enough, i.e., ϕπ > φ(Θ), then the targeted steady state is
still locally determinate as in our baseline model. But, we still have global indeterminacy and the
global dynamics of output and inflation mirror those in our baseline economy. In addition to the
targeted steady state, there still exists an untargeted steady state with lower economic activity. But
since government debt is a predetermined variable, the economy can no longer simply jump between
steady states. However, we still have global indeterminacy: Appendix D.1 shows that when risk is
mildly countercyclical, pessimistic beliefs can still cause the economy to slowly transition from near

23In our formulation, the assumption that b⋆ > 0 ensures that primary surplus is positive in steady state. We choose to
focus on the case with positive real interest rates and positive primary surpluses as it distinguishes the source of equilibrium
multiplicity in our framework from that in Kaplan et al. (2023), who show that in economies with incomplete markets, the
fiscal theory of the price level may not yield a unique equilibrium when governments run persistent deficits.
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the targeted steady state to the untargeted steady state along a saddle-connection. Similarly, when risk
is moderately countercyclical, self-fulfilling beliefs can still cause the economy to permanently move
away from the targeted steady state, and to converge over time to a stable cycle which surrounds the
targeted steady state.24

Passive Monetary, Active Fiscal In contrast, Appendix D.2 shows that a regime of active fiscal policy
alongside passive monetary policy does eliminate all the manifestations of global indeterminacy which
appear in our baseline model (or in the active monetary, passive fiscal regime). In particular, an active
fiscal, passive monetary regime eliminates the existence of the untargeted steady state, as well as the
stable cycle for any Θ > 0, i.e., it prevents households’ beliefs about the economy going down such
trajectories from become self-fulfilling not matter how countercyclical risk is. This is formalized in
Proposition 5 below.

Proposition 5 (Global determinacy with passive monetary and active fiscal policy). Suppose that ϕπ < 1
and ϕb ∈ [0, 1). Then, the economy has a unique steady state with output and inflation at their targeted values
and real government debt equal to b⋆. Furthermore, the equilibrium is globally determinate: for any given level
of government debt b0, there exists a unique (x0, π0) s.t. only the trajectory originating at (x0, π0, b0) remains
bounded. Furthermore, this trajectory converges to the targeted steady state in which x = π = 0 and b = b⋆.

Proof. See Appendix D.2

The fact that the passive monetary, active fiscal regime delivers global determinacy in our HANK
economy follows from the standard logic of the Fiscal Theory of the Price Level. When fiscal policy is
active (0 ≤ ϕb < 1), the fiscal rule (23) along with the government budget constraint (24) implies
that even when the gap between outstanding government debt and its targeted level is getting wider,
fiscal policy does not raise taxes sufficiently to narrow this gap. Thus, for a given level of nominal
government liabilities, the price must adjust to ensure that in equilibrium, the real value of government
debt equals the net present value of future primary surpluses. Consequently, the price level is pinned
down uniquely to ensure that the government is solvent (Cochrane, 2011).

To see how this logic rules out the existence of the untargeted steady state, suppose that as before,
ξh households start to believe that the economy is about to permanently enter a recession: output
and inflation will remain permanently below their targeted level. Along with the fact that monetary
policy is passive, this deflationary path implies that the interest liability of the government is now
higher and consequently, the real value of outstanding government debt would increase over time
unless the government raises taxes sufficiently. However, with ϕb ∈ [0, 1), the fiscal rule (23) implies
that taxes do not increase sufficiently, despite the growing level of real government debt. Thus, if
pessimistic beliefs were to actually push the economy into a permanent recession, the government
would eventually become insolvent, and the government budget constraint would be violated. This
prevents such pessimistic beliefs from becoming self-fulfilling, and hence the untargeted steady state
cannot exist in a passive monetary, active fiscal regime. Similarly, with active fiscal policy, households’

24Furthermore, Appendix D.1 also shows that the untargeted steady state is locally indeterminate which implies that in the
neighborhood of the untargeted steady state, for a given level of government debt, there are multiple combinations of (x, π)
starting from which the economy converges to the untargeted steady state, implying global indeterminacy.
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beliefs of the economy being permanently trapped in a cycle around the targeted steady state cannot
be confirmed in equilibrium, because along the trajectory of output, inflation and real government debt
implied by such a belief would result in the government budget constraint being violated.25

5 Conclusion

We have shown that if risk is even mildly countercyclical, HANK economies can feature self-fulfilling
fluctuation under standard monetary policy rules. This is because in HANK economies with counter-
cyclical risk, the natural interest rate is endogenous and co-moves with output, leaving the economy
susceptible to endogenous demand shocks. In order to neutralize these endogenous demand shocks,
monetary policy needs to commit to adjusting nominal rates one-for-one with any endogenous fluctua-
tions in the natural rate. Doing so implements a unique equilibrium by ensuring that non-fundamental
beliefs cannot be self-fulfilling. If doing so is not feasible, a regime with passive monetary policy
coupled with an active fiscal regime can also prevent these self-fulfilling beliefs from taking root.

Importantly, since the multiplicity of equilibria does not stem from the presence of the ELB, it
can plague the economy even during a tightening cycle. Moreover, our analysis stresses that large and
aggressive rate hikes in response to higher inflation do not ensure that inflation expectations will remain
anchored around its target level. Instead, our framework suggests that, just as central banks monitor
and react to inflation expectations, if measures of confidence in the real economy (such as consumer
confidence, households’ perceived probability of job loss etc.) begin to drift down or up, monetary
policy must act aggressively to reverse such beliefs, if it hopes to keep expectations anchored.

Finally, our findings show that local stability analysis can provide a misleading picture regard-
ing the performance of policy rules: in our economy, even when the targeted equilibrium is locally
determinate, multiple bounded equilibria exist. This suggests that researchers using HANK models
need to be more vigilant regarding the possibility of multiple equilibria. Furthermore, the diverging
conclusions based on local vs global determinacy above have important implications regarding the
design of monetary policy, which are particularly relevant for the recent post-COVID inflation surge
witnessed globally. For example, based on local determinacy one would conclude that an aggressive
enough response of monetary policy to higher inflation (high enough ϕπ) should ensure that the tar-
get equilibrium is determinate, or in other words, that inflation expectations remain anchored around

25Finally, it is also worth commenting on the relation between our paper and a series of papers by Marcus Hagedorn
(Hagedorn, 2016; Hagedorn et al., 2019; Hagedorn, 2024), which study nominal determinacy in a class of incomplete markets
models. These papers exploit the non-Ricardian features of many HANK models which result in a relationship between the
real interest rate and the steady state level of government debt. In particular, these papers show that if one specifies fiscal
policy as a rule for the level (or more generally, the growth rate) of nominal debt, such a rule delivers a locally-determinate
equilibrium in this class of models.

However, such a specification of policy does not rule out global indeterminacy in our HANK economy with countercyclical
risk. In fact, it cannot even eliminate local indeterminacy in our framework. The reason behind the inability of such policies
in affecting the determinacy properties in our HANK model is because in our model, the steady state real interest rate is
independent of the level of real government debt owing to the assumption of quasi-linear preferences: the steady state real

interest is given by r = ρ − λl

(
ξh
ξl
− 1
)

and is independent of the level of government debt. The inability of such rules
to eliminate equilibrium multiplicity in our economy highlights the fact that multiple equilibria are not driven by the non-
Ricardian features of many HANK models which impart a relationship between the steady state real interest rate and the
level of real government debt. Consequently, the types of policy rules which eliminate this indeterminacy are conceptually
different than those identified in Hagedorn (2016); Hagedorn et al. (2019); Hagedorn (2024).
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the targeted level of inflation. However, this conclusion would be incorrect since our global analysis
reveals that this prescription (no matter how aggressively monetary policy responds to the higher in-
flation) can still lead to the economy getting trapped in a situation where inflation expectations become
permanently unanchored.
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Appendix

A Derivation of IS curve

A.1 Household problem

Instead of directly solving the household problem in continuous time, we solve it in the discrete time
limit in which each period is ∆ units of time long. Then we derive the optimal decisions in continuous
time by taking limits as ∆ → 0. In discrete time, the problem of the household can be written as, where
we have discarded the j subscript for convenience:

max E0

∞

∑
t=0

e−ρ∆t

[
c1−γ−1

t∆
1 − γ−1 − ψnt∆

]
∆

s.t.
at+∆ − at = (1 + rt∆) (ξhwtnt + Dt − ct)∆ + rt+∆∆at and at+∆ ≥ −a

This problem can be formulated as a Bellman equation. The value function of a household with
idiosyncratic productivity ξh and wealth at can be written as:

V (at, ξh) =

[
c1−γ−1

t
1 − γ−1 − ψnt

]
∆ + (1 − ρ∆) [(1 − λl,t+∆∆)V (at+∆, ξh) + λl,t+∆∆V (at+∆, ξl)] ,(a.1)

where at+∆ is given by:

at+∆ = (1 + rt∆) [(ξhwtnt + Dt − ct)∆ + at] and at+∆ ≥ −a, (a.2)

and we have used the fact that for small ∆, e−ρ∆ = 1− ρ∆. Similarly, the value function for a household
with idiosyncratic productivity ξl and wealth at can be written as:

V (at, ξl) =

[
c1−γ−1

t
1 − γ−1 − ψnt

]
∆ + (1 − ρ∆) [(1 − λh,t+∆∆)V (at+∆, ξl) + λh,t+∆∆V (at+∆, ξh)] ,

where at+∆ is given by:

at+∆ = (1 + rt∆) [(ξlwtnt + Dt − ct)∆ + at] and at+∆ ≥ −a,

The optimal choice of hours worked nt by a household with idiosyncratic productivity ξh is given by:

ψ

ξhwt
= (1 + rt∆) (1 − ρ∆) [(1 − λl,t+∆∆)Va (at+∆, ξh) + λl,t+∆∆Va (at+∆, ξl)] , (a.3)

and by a household with idiosyncratic productivity ξl is given by:

ψ

ξlwt
= (1 + rt∆) (1 − ρ∆) [(1 − λh,t+∆∆)Va (at+∆, ξl) + λh,t+∆∆Va (at+∆, ξh)] , (a.4)
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The optimal choice of consumption for a household with productivity ξh and ξh can be written as:

ct(a, ξh) ≤ {(1 + rt∆) (1 − ρ∆) [(1 − λl,t+∆∆)Va (at+∆, ξh) + λl,t+∆∆Va (at+∆, ξl)]}−γ (a.5)

ct(a, ξl) ≤ {(1 + rt∆) (1 − ρ∆) [(1 − λh,t+∆∆)Va (at+∆, ξl) + λh,t+∆∆Va (at+∆, ξh)]}−γ , (a.6)

where we have divided both sides of each equation by ∆. The inequality captures the fact that house-
holds may be borrowing constrained. Next, the envelope conditions for ξh and ξl households are

Va (at, ξh) = (1 + rt∆) (1 − ρ∆) [(1 − λl,t+∆∆)Va (at+∆, ξh) + λl,t+∆∆Va (at+∆, ξl)] (a.7)

Va (at, ξl) = (1 + rt∆) (1 − ρ∆) [(1 − λh,t+∆∆)Va (at+∆, ξl) + λh,t+∆∆Va (at+∆, ξh)] (a.8)

Using the envelope conditions along with (a.3)–(a.6), we have:

ch,t ≡ ct(a, ξh) =

(
ξhwt

ψ

)γ

and cl,t ≡ ct(a, ξl) =

(
ξlwt

ψ

)γ

, (a.9)

which shows that the consumption of all households with the same idiosyncratic productivity ξ j is the
same, regardless of their financial wealth.

Next, it is easy to see that for any real interest rate rt, the expected consumption growth of ξl

households is larger than that of ξh households. The expected consumption growth between dates
t + ∆ and t, for a household with productivity ξl at date t can be written as:

(1 − λh,t+∆∆)
cl,t+∆

cl,t
+ λh,t+∆∆

ch,t+∆

cl,t
=

{
1 + λh,t+∆∆

[(
ξh

ξl

)γ

− 1
]}(

wt+∆

wt

)γ

,

while the expected consumption growth of a household with productivity ξh at date t can be written as{
1 − λl,t+∆∆

[
ξ

γ
h −ξ

γ
l

ξ
γ
h

]} (
wt+∆

wt

)γ
. Thus, for any path of aggregate variables, the expected consumption

growth is higher for ξl households. Hence, in equilibrium, at any date t, all ξl households must be
borrowing constrained, and choose at+∆ = −a. In contrast, the ξh households are on their Euler
equation, which can be derived by rearranging the envelope condition for ξh households as:

ρ − rt (1 − ρ∆)
(1 + rt∆) (1 − ρ∆)

Va (at, ξh) =

[
Va (at+∆, ξh)− Va (at, ξh)

∆
+ λl,t+∆ {Va (at+∆, ξl)− Va (at+∆, ξh)}

]
Taking the limit of this equation as ∆ → 0, we get:

(ρ − rt)Va (at, ξh) = V̇a (at, ξh) + λl,t {Va (at, ξl)− Va (at, ξh)} (a.10)

Next, using (a.3)-(a.6), we have:

Va (at, ξh) = c−γ−1

h,t , Va (at, ξl) = c−γ−1

l,t and V̇a (at, ξh) = c−γ−1

h,t
ċh,t

ch,t
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Using this in (a.10), we have the Euler equation:

ċh,t

ch,t
= γ (rt − ρ) + γλl,t

[(
cl,t

ch,t

)− 1
γ

− 1

]
,

which is the same as (9) in the main text.

A.2 Government debt and asset market clearing

In our baseline model, we assume that there is zero government debt issued Bt = 0 at each date. Since
at any date t, all η of the ξl households are borrowing constrained and thus, in net, they borrow ηa,
where η is the constant fraction of ξl households. Consequently, asset market clearing implies that ξh

households at date t must be net savers and hold ηa as a group.
Allowing for non-zero government debt does not affect the savings decision of ξl households and

at any date t, they are still borrowing constrained and borrow ηa as a group. However, now that there
is a non-zero amount of government debt in the economy, asset market clearing implies that all ξh

households as a whole must save ηa + bt at date t, where bt denotes real government debt at date t (see
below).

Notice that despite changing the equilibrium asset holdings of ξh households, adding non-zero gov-
ernment debt into our economy does not affect the consumption of each type of households, which is
still given by (a.9). This is because quasi-linear preferences imply that consumption of each household
is independent of their wealth. Consequently, because we always normalize government expenditures
to 0, with or without government debt, the goods market clearing condition can be written as:

yt = (1 − η)ch,t + ηcl,t, (a.11)

Using the expressions for ch and cl in (a.9), (a.11) can be re-written as:

yt =

[
(1 − η)

(
ξh

ψ

)γ

+ η

(
ξl

ψ

)γ]
wγ

t

Normalizing ψ =
[
(1 − η)ξγ

h + ηξ
γ
l

] 1
γ , we can rewrite this as:

wt = y
1
γ

t , (a.12)

which is the same as (11) in the main text. Furthermore, setting π̇ = 0 and π = 0 in the Phillips curve
(5) implies that real wages in the steady state with on-target inflation is w = 1. Consequently, (a.12)
implies that output in the targeted steady state is y = 1. Finally, using this relationship in (a.9), we can
express the per-capita consumption of households with skill ξ in terms of output at any date t:

ch,t =
ξ

γ
h

(1 − η)ξγ
h + ηξ

γ
l

yt >
ξ

γ
l

(1 − η)ξγ
h + ηξ

γ
l

yt = cl,t (a.13)
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Government budget constraint The government budget constraint be written in nominal terms as:

Ḃt = itBt − PtTt

where Bt denotes the stock of nominal government debt at date t, Tt denote taxes net of transfers, and
we have normalized government expenditures g = 0. Defining real debt as bt = Bt/Pt, we can rewrite
the government budget constraint in real terms as

ḃt = (it − πt)bt − Tt (a.14)

In our baseline model (Section 3), we restrict attention to the case in which Tt = bt = 0 at all dates.
However, in Section 4.2, we assume that fiscal policy sets Tt according to the following rule:

Tt = T + rϕbbt (a.15)

Combining (a.14) and (a.15), the evolution of real government debt can be written as:

ḃt = (it − πt − rϕb) bt − T, (a.16)

Defining b⋆ as the level of real government debt in the targeted steady state, imposing ḃ = 0 and b = b⋆

in (a.16) implies that
T = r (1 − ϕb) b⋆

Using this, we can rewrite (a.16) as:

ḃg
t = (rt − rϕb) bt − r (1 − ϕb) b⋆, (a.17)

where rt = it − πt is the real interest rate at date t. Rather than working with (a.17), it is more conve-
nient to characterize the dynamics of bg

t = bt − b⋆, i.e, the gap between the actual level of government
debt and its level in the targeted steady state. We can then express (a.17) in terms of bg

t as:

ḃt = (rt − r) b⋆ + (rt − rϕb) bg
t (a.18)

A.3 Aggregate dynamics

The aggregate dynamics of yt, πt and bg
t are described by the the IS curve, the Phillips curve and

the government budget constraint. We start by deriving the IS curve. Taking the time-derivative of
expression for ch,t in (a.13) yields ċh,t

ch,t
= ẏt

yt
. We can then rewrite the Euler equation of the ξh household

(9) as:

ẏt

yt
= γ

(
it − πt − ρ

)
+ γλl

(
ξh

ξl
− 1
)

y−Θ
t
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Next, defining xt =
1
γ ln yt, we can rewrite the above as:

ẋt = it − πt − ρ + λl

(
ξh

ξl
− 1
)

e−γΘxt

Substituting out it = r + ϕππt using the monetary policy rule (6), we have

ẋt = r + (ϕπ − 1)πt − ρ + σe−γΘxt , (a.19)

where σ = λl

(
ξh
ξl
− 1
)

, and r = ρ − σ is the real interest rate in the targeted steady state (and also the
intercept in the monetary policy rule). Similarly, rewriting the Phillips curve (5) in terms of xt, we have

π̇t = ρπt − κ (ext − 1) (a.20)

Finally, by substituting it = r+ϕππt using the monetary policy rule (6), into the government budget
constraint (a.18), we can rewrite (a.18) as:

ḃt = (ϕπ − 1) b⋆πt + r (1 − ϕb) bg
t + (ϕπ − 1)πtb

g
t , (a.21)

which is the same as equation (24) in the main text.

Flexible-price limit Since we abstract from aggregate shocks, in the flexible-price limit of our econ-
omy (κ → ∞), the Phillips curve implies that at any date t, xt = πt = 0. Using this in (a.19)
and rearranging, the real interest rate in the flexible price limit r is given by r = ρ − σ, where
σ = λl

(
ξh
ξl
− 1
)
≥ 0 captures the effect of consumption risk faced by households in steady state.

Using the fact that r = ρ − σ, the equilibrium dynamics of xt, πt, bg
t are given by the three dimen-

sional system of non-linear ODEs:

ẋt = (ϕπ − 1)πt + σ
(

e−γΘxt − 1
)

(a.22)

π̇t = ρπt − κ (ext − 1) (a.23)

ḃg
t = (ϕπ − 1) b⋆πt + r (1 − ϕb) bg

t + (ϕπ − 1)πtb
g
t (a.24)

A.3.1 Aggregate dynamics in the baseline model with zero government debt

In our baseline model with zero government debt, which implies that bt = b⋆ = bg
t = ḃg

t = 0 at all
dates. Thus, (a.24) simply states that 0 = 0, and so the aggregate dynamics of xt, πt in our baseline
economy with zero government debt are fully described by the IS curve (a.22) and Phillips curve (a.23).

In the flexible price limit of the baseline economy κ → ∞, as previously mentioned, the Phillips
curve implies that xt = πt = 0 is the only bounded solution which satisfies both the IS and Phillips
curves, and is thus the unique bounded equilibrium.
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B Baseline model with inflation targeting rule

This section contains the proof of claims relating to the baseline model described by (16a)-(16b).

B.1 Global determinacy in RANK and in HANK with acyclical risk

In the RANK limit (σ = 0)/ with acyclical risk (σ > 0, Θ = 0), aggregate dynamics are given by:

ẋt = (ϕπ − 1)πt

π̇t = ρπt − κ(ext − 1)

The Jacobian of the system evaluated at any (x, π) can be written as:[
0 ϕπ − 1

−κex ρ

]

To show that ϕπ > 1 delivers global determinacy, we can invoke the Bendixson–Dulac theorem (Bendix-
son, 1901; Dulac, 1937),26 which states if the trace does not change sign anywhere in the domain, then
there are no non-constant periodic solutions lying entirely within (x, π) ∈ (−∞, ∞)2. This is true by
inspection since the trace is given by ρ > 0. Thus, there are no non-constant periodic solutions.

Next, with ϕπ > 1, the determinant of the Jacobian evaluated at the targeted steady state (x, π) =

(0, 0) is given by κ(ϕπ − 1) > 0. Together with the fact that the trace is always positive ρ > 0, this
implies that both eigenvalues have positive real parts. Thus, the targeted steady state (0, 0) is unstable,
and hence the only bounded equilibrium is given by the trajectory (xt, πt) = (0, 0) for all t.

B.2 Proof of Proposition 2

Close to the targeted steady state (0, 0), the dynamics of the system (16a)-(16b) are governed by:[
ẋ
π̇t

]
= A

[
x
π

]
+O

(
x2) for (x, π) → (0, 0),

where A is given by

A =

[
−σγΘ ϕπ − 1
−κ ρ

]
,

Since both x and π are “jump” variables, local determinacy requires that both eigenvalues of A have
a positive real part. As is well known, the sum of the two eigenvalues of A, denoted by z1 and z2, is
given by the trace of A, while their product is given by the determinant of A:

z1 + z2 = ρ − σγΘ,

z1 × z2 = κ(ϕπ − 1)− ρσγΘ

26See Theorem 4.1 on page 39 in Verhulst (1990) for a simple statement of the Bendixson-Dulac theorem in English.
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Since this is a two dimensional system, either both z1 and z2 are real, or they are complex conjugates.
Thus, for z1 and z2 to both have positive real parts, it is sufficient that both the sum and product of
z1, z2 be positive. In other words, as long as Θ < Θ∗ ≡ ρ

σγ , a sufficient condition for local determinacy
is that

ϕπ > 1 +
ρσγΘ

κ
,

which is the same condition as in Proposition 2. Finally, for Θ > Θ∗, the sum of the two eigenvalues
z1 + z2 < 0 regardless of the magnitude of ϕπ, implying that at least one of the eigenvalues must have a
negative real part, i.e., regardless of the magnitude of ϕπ, the equilibrium is locally indeterminate.

B.3 Multiple Steady States

For any Θ > 0, our baseline HANK economy has two steady states (except in a knife edge case). The
ẋ = 0 and π̇t = 0 nullclines imply that in any steady state, (x, π) must satisfy:

0 = (ϕπ − 1)π + σ
(

e−γΘx − 1
)

0 = ρπ − κ (ex − 1)

Clearly, (0, 0) always satisfies both equations. To see that there is generically another steady state,
combine the two equations to eliminate π, to get an expression exclusively in terms of x:

F(x) =
κ (ϕπ − 1)

ρ
(ex − 1) + σ

(
e−γΘx − 1

)
, (b.1)

and any x which satisfies F(x) = 0 constitutes a steady state. Again, clearly x = 0 solves this equation.
The derivative of F(x) is given by:

F′(x) =
κ (ϕπ − 1)

ρ
ex − σγΘe−γΘx,

which, evaluated at x = 0 yields

F′(0) =
κ

ρ

(
ϕπ − φ(Θ)

)
where φ(Θ) = 1 +

ρσγΘ
κ

,

If ϕπ = φ(Θ), then F′(0) = 0 and F(x) is tangent to the x-axis at x = 0, implying that it is the only
zero of F(x) since F(x) is declining in the region x = 0 and increasing in the region x > 0. This is the
knife edge case in which there is a unique steady state. If instead, ϕπ > φ(Θ), then F′(0) > 0. Since
limx→−∞ F(x) → ∞, there must be at least one intersection with x < 0 and F′(x) < 0. Since F(x) is
strictly convex, this intersection is unique. Further, note that dF(x)/dϕπ < 0 for x < 0 by inspection.
Thus, by the implicit function theorem, we have dx/dϕπ < 0.

Instead if 1 < ϕπ < φ(Θ), then F(x) intersects the x axis twice, one of which is x = 0. We also
know that in this case F′(0) < 0 and that F(x) → ∞ as x → ∞, implying that there is at least one
intersection at x > 0 with F′(x) > 0. Since F(x) is convex as long as ϕπ > 1, this intersection is the
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only other intersection except x = 0. Furthermore, the implicit function theorem implies that a smaller
ϕπ implies a larger x as long as ϕπ > 1.

Case with ϕπ = 1 Finally, it is worth mentioning that with ϕπ = 1, only the targeted steady state
exists. If we impose ϕπ = 1, (b.1) simplifies to:

F(x) = σ
(

e−γΘx − 1
)

,

which is clearly a monotonic function of x, and so x = 0 is the only solution to the equation F(x) = 0.
Thus, it follows that with ϕπ = 1, only the targeted steady state exists.

However, there is still both local and global determinacy as there are multiple bounded trajectories
{xt, πt} which originate away from the targeted equilibrium (0, 0) and still stay bounded. The easiest
way to see this is to check the condition for local determinacy. This requires that that that the eigen-
values of the matrix A, defined in equation (17) in Section 3 of the main paper has two explosive roots.
Setting ϕπ = 1, we can write the matrix A as:

A =

[
−σγΘ 0
−κ ρ

]

The product of the two eigenvalues of A is given by the determinant of A, which is given by −ρσγΘ.
This is clearly negative as long as risk is countercyclical Θ > 0. Since the product of the eigenvalues is
negative, it is automatic that the eigenvalues are real, and one is positive while the other is negative.
This structure of eigenvalues implies that there is a 1-dimensional stable manifold around the targeted
steady state, and any trajectory which begins on this manifold converges to the targeted steady state
and hence remains bounded. Thus, with ϕπ = 1, as in RANK, when risk is countercyclical the targeted
equilibrium is locally and hence globally indeterminate, and hence, it is without loss of generality that
we focus on the case with ϕπ > 1 in our baseline.

B.4 Local stability of the untargeted steady state

For any Θ > 0, we focus of the case in which ϕπ > φ(Θ), which is a necessary (but not sufficient)
condition for the targeted equilibrium to be locally determinate (see Proposition 2). We now show that
whenever this condition is satisfied, the untargeted steady state, which features lower output x. At the
untargeted steady state, the Jacobian of the system (16a)-(16b) can be written as:

Ax =

[
−σγΘe−γΘx ϕπ − 1

−κex ρ

]
(b.2)

Thus, up to first-order, the dynamics around the untargeted steady state are identical to the local
dynamics around the targeted steady state of an alternate economy with more cyclical risk: Θ′ =

Θe−γΘx > Θ and a flatter Phillips curve with slope κ′ = κex < κ (since x < 0, and so e−γΘx > 1 and
ex < 1). Consequently, we can apply Proposition 2 to conclude that for the untargeted steady state
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(x, πg) to be unstable (locally determinate), we need:

ϕπ > 1 +
ρσγΘ′

κ′
= 1 +

ρσγΘ
κ

e−(γΘ+1)x

However, for a given Θ and ϕπ, this can never be satisfied as long as ϕπ > φ(Θ). To see why, recall
from Appendix B.3 that we can use (b.1) to write dx/dϕπ as:

dx
dϕπ

=

(
ex

1 − ex

) [
ϕπ − 1 − ρσγΘ

κ
e−(1+γΘ)x

]

We know that this expression is negative as long as ϕπ > 1 + ρσγΘ
κ . Since x < 0, this implies that

ϕπ < 1 +
ρσγΘ

κ
e−(1+γΘ)x, (b.3)

i.e., the untargeted steady state (x, πg) is stable (locally indeterminate), if ϕπ > 1 + ρσγΘ
κ .

B.5 Proof of Proposition 3

Given the interest rate rule it = r + ϕππt, the aggregate dynamics of the output-gap xt and inflation πt

is given by the following 2 dimensional system of ordinary differential equations:

ẋ = (ϕπ − 1)π + σ
(

e−γΘx − 1
)

π̇ = ρπ − κ (ex − 1)

We can rewrite this system in matrix form as:[
ẋt

π̇t

]
=

[
−σγΘ ϕπ − 1
−κ ρ

]
︸ ︷︷ ︸

A

[
xt

πt

]
+

[
σ
(
e−γΘxt − 1 + γΘxt

)
−κ (ex − 1 − xt)

]
(b.4)

Next, for a given Θ > 0 and assuming that (18) is satisfied, we show that the global dynamics of
(xt, πt) can be split into 3 broad regions depending on the magnitude of Θ. This result is formally
presented in Proposition 6 below.

Proposition 6 (Global dynamics). Consider the economy described in Proposition 1 for a given Θ > 0 and
assume that (18) is satisfied. Then the global dynamics depend on the magnitude of the cyclicality of risk Θ, and
can be split into 3 broad regions.

1. Mildly countercyclical risk Θ ∈
(

0, Θ⋄
)

: ∃Θ⋄ > 0, such that for any Θ ∈ (0, Θ⋄), there exists a
saddle-connection, along which the economy can transition from the neighborhood of the targeted steady
state to the untargeted steady state. In this region, the targeted equilibrium is locally determinate, but there
is global indeterminacy, as any trajectory starting on the saddle connection also remains bounded forever,
while satisfying all equilibrium conditions. Figure 4a depicts this case.

2. Moderately countercyclical risk Θ ∈ [Θ⋄, Θ⋆]: For any Θ ∈ [Θ⋄, Θ⋆), trajectories originating in the
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neighborhood of the targeted steady state (0, 0) initially diverge away from the steady state but eventually
converge to a super-critical limit-cycle surrounding (0, 0), and thus remain bounded and imply the equi-
librium is globally indeterminate, even though the targeted steady state is locally determinate. Moreover,
the periodicity of the periodic solutions is a decreasing function of Θ in the range (Θ⋄, Θ⋆). Figure 4c
depicts the stable cycle.

In the knife edge case with Θ = Θ⋄, there exists a homoclinic orbit, which is a stable trajectory which
connects the untargeted steady state (x, π) to itself, and lies on the boundary of the periodic solutions
described above. Again, this implies global indeterminacy, even though (0, 0) is locally determinate.

Finally, if Θ = Θ⋆, the limit-cycles collapse onto the steady state (0, 0). The equilibrium is globally
indeterminate since the higher-order terms ensure that any trajectory starting in the neighborhood of the
targeted steady state converges back to (0, 0). This case is depicted by Figure 4b

3. Highly countercyclical risk Θ > Θ⋆: For any Θ > Θ⋆, the targeted steady state (0, 0) is locally
indeterminate even if (18) is satisfied, i.e., there exists multiple bounded trajectories in the neighborhood
of (0, 0), which converge to the targeted steady state. Since the equilibrium is locally indeterminate, it is
also globally indeterminate. In addition to the multiple bounded trajectories which start near the targeted
steady state, there also exists a saddle-connection, along which, the economy converges to the targeted
steady state even if it starts near the untargeted steady state. This is depicted by Figure 4d

Overall, for any Θ > 0, i.e, if risk is even mildly countercyclical, there is global indeterminacy. For any finite
ϕπ, the inflation targeting rule (6) fails at eliminating the existence of multiple bounded equilibria.

We will prove Proposition 6 by using Theorem 7.1 in Kopell and Howard (1975), and the Hopf
bifurcation theorem (Marsden and McCracken, 1976). We present these theorems here for convenience.

Theorem 1 (Hopf Bifurcation Theorem). Consider a two-dimensional system

ẋ = Fµ(x), x ∈ R2, µ ∈ R

with smooth F, which for all sufficiently small |µ| has the equilibrium x = (0, 0), and the Jacobian DxFµ(0, 0)
has eigenvalues

λ1,2(µ) = Ω(µ)± iω(µ) where i =
√
−1,

Then, if the following conditions are satisfied:

1. At µ = 0, there exists a purely imaginary set of eigenvalues: Ω(0) = 0 and ω(0) > 0

2. The eigenvalues cross the imaginary axis with non-zero speed: dΩ(0)
dµ ̸= 0

3. The first Lyapunov coefficient of the system ℓ1(0) ̸= 0,

there exists a family of real periodic solutions x = x(t, ϵ), µ (ϵ) which has properties µ (0) = 0, x(t, 0) = (0, 0),
but x(t, ϵ) ̸= (0, 0) for sufficiently small ϵ. The same holds for the period T(ϵ) and T(0) = 2π/ |ω(0)| .

Theorem 2 (Theorem 7.1 in Kopell and Howard (1975)). Let ẋ = Fµ,ν(x) be a two parameter family of
ODEs on R2, F smooth in all of its four arguments, such that Fµ,ν(0, 0) = 0. Also assume:
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1. dF0,0(0, 0) has a double zero eigenvalue and a single eigenvector v.

2. The mapping (µ, ν) → (det(dF0,0(0, 0), tr(dF0,0(0, 0)) has a nonzero Jacobian at (µ, ν) = (0, 0).

3. Let Q(x, x) be the 2 × 1 vector containing the terms quadratic in x and independent of (µ, ν) in a Taylor
series expansion of Fµ,ν(x) around 0. Then [dF0,0(0, 0), Q(v, v)] has rank 2.

Then there is a curve f (µ, ν) = 0 such that if f (µ0, ν0) = 0, then ẋ = Fµ0,ν0(x) has a homoclinic orbit. This
one-parameter family of homoclinic orbits (in (X, µ, ν) space) is on the boundary of a two-parameter family of
periodic solutions. For all |µ|, |ν| sufficiently small, if ẋ = Fµ,ν(x) has neither a homoclinic orbit nor a periodic
solution, there is a unique trajectory joining the critical points.

We first use Theorem 1 to prove point 2 of Proposition 6. We use the cyclicality of risk Θ as the
bifurcation parameter (which plays the role of µ in Theorem 1 above). Define Θ⋆ = ρ

σγ . Imposing
Θ = Θ⋆ in (b.4) yields[

ẋt

π̇t

]
=

[
−ρ ϕπ − 1
−κ ρ

]
︸ ︷︷ ︸

A⋆

[
xt

πt

]
+

[
σ
(

e−
ρ
σ xt − 1 + ρ

σxt

)
−κ (ex − 1 − xt)

]
, (b.5)

It is clear by inspection that the trace of the matrix A⋆ is equal to zero, which implies that the two
eigenvalues sum to 0. Also, the determinant of A⋆ is given by

Det(A⋆) = κ(ϕπ − 1)− ρ2

Next, recall that the augmented Taylor principle (18) requires that ϕπ > 1+ ρσγΘ
κ for local determinacy.

Evaluating this expression at Θ = Θ⋆, we have ϕπ > 1 + ρ2

κ , which in turn implies that Det(A⋆) > 0.
Consequently, at Θ = Θ⋆ the eigenvalues of A⋆ are purely imaginary and given by ±ωi, where
i =

√
−1 and ω =

√
κ(ϕπ − 1)− ρ2. Thus, requirement 1 of Theorem 1 is satisfied at Θ = Θ⋆ (this

corresponds to the µ = 0 in the statement of the theorem).
Next, it is clear by inspection that the eigenvalues of the matrix A in (b.4) change smoothly in Θ,

which implies that condition 2 of Theorem 1 is also satisfied. Thus, the only other condition we need
to check is that the first Lyapunov coefficient (evaluated at the bifurcation point) is not 0. To check this,
we first need to transform the system (b.5) into normal-form, for which we diagonalize A⋆ as:27

A⋆ = PDP−1,

where

D =

[
0 −ω

ω 0

]
and P =

[
ρ ω

κ 0

]
27The normal form involves a change of variables so that the first-order accurate system can be written in the well known

“decoupled” system. Diagonalizing a matrix with real eigenvalues leads to a decoupled system with entries only on the
main diagonal. However, since we are diagonalizing a 2x2 matrix with purely complex roots, the diagonalized matrix
features non-zero entries only on the anti-diagonal. See the matrix in equation (b.6).
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Next, we can pre-multiply both sides of (b.5) by P−1 to express the system in normal form:[
u̇
v̇

]
=

[
0 −ω

ω 0

] [
u
v

]
+

[
f (u, v)
g(u, v)

]
, (b.6)

where [
u
v

]
= P−1

[
x
π

]
,

f (u, v) = −eρu+ωv + 1 + ρu +ωv

g(u, v) =
ρeρu+ωv + σe−

ρ
σ (ρu+ωv) − (ρ + σ)

ω

Finally, the first Lyapunov coefficient at the bifurcation point Θ = Θ⋆ is given by:

ℓ1(0) = fuuu (0, 0) + fuvv (0, 0) + guuv (0, 0) + gvvv (0, 0)

+
1
ω

[
fuv (0, 0) ( fuu (0, 0) + fvv (0, 0))− guv (0, 0) (guu (0, 0) + gvv (0, 0))− fuu (0, 0) guu (0, 0)

+ fvv (0, 0) gvv (0, 0)
]

= − (ρ + σ)
ρ2κ2 (ϕπ − 1)2

σ2ω2 < 0,

which is non-zero, for any ϕπ > 0. Thus, condition 3 of Theorem 1 is also satisfied, and the system (b.4)
undergoes a Hopf bifurcation at Θ = Θ⋆. Furthermore, since ℓ1(0) regardless of the value of ϕπ > 1,
the Hopf bifurcation is always supercritical, i.e. the higher-order terms of the system (b.4), push x in
towards the equilibrium (0, 0).

In terms of our HANK model, this means that there exists Θ⋄ ∈ (0, Θ⋆) such that for any Θ in the
neighborhood Θ ∈ (Θ⋄, Θ⋆), starting from any initial condition in the neighborhood (x, π) = (0, 0),
the system converges to a stable cycle around the targeted steady state. In the main text, if cyclicality
of risk is such that Θ⋄ < Θ < Θ⋆, we say that risk is “moderately countercyclical”. Thus, for any Θ
in the moderately countercyclical region, even though the targeted equilibrium is locally determinate,
the equilibrium is globally indeterminate since all trajectories starting near the targeted steady state
initially diverge but then converge to a cycle, remaining bounded.

Theorem 1 also implies that the amplitude and periodicity of the stable cycles are decreasing func-
tions of Θ in the moderately countercyclical range, which in turn depends on the inverse of ω (the
imaginary part of the eigenvalue). In particular, at Θ = Θ⋄, Proposition 6 shows that there exists a
homoclinic orbit (we prove this using Theorem 2 below). The homoclinic orbit has infinite periodicity,
which means that Θ⋄ is implicitly defined by the Θ for which the cycle has infinite periodicity. While
this cannot be characterized analytically, we can numerically compute the value of Θ⋄, and this value is
presented in the main text. Thus, as we increase Θ from Θ⋄ towards Θ⋆, the amplitude and periodicity
of the cycles decrease. Finally, at Θ = Θ⋆ the periodicity of the cycle is 0 and the cycle collapses on to
the targeted steady state itself. However, as we show next, the equilibrium is still indeterminate. Since
the eigenvalues of the Jacobian at Θ = Θ⋆ are purely imaginary, the first-order terms do not move the
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system away from or towards (0, 0). However, since the Hopf bifurcation is supercritical, the higher-
order terms push in towards the origin, implying that all trajectories which start in the neighborhood
of the targeted steady state (0, 0) remain bounded, implying global indeterminacy.

As mentioned above, to prove the existence of the homoclinic orbit at Θ = Θ⋄, we need to use
Theorem 2, which states that as long the conditions 1,2,3 are satisfied, then (b.4) has a homoclinic orbit
on the boundary of the stable cycles we described above. While Theorem 1 only required conditions
on one parameter Θ, Theorem 2 requires imposing some additional conditions on a second parameter.
For us, it is most convenient to choose ϕπ as the second parameter. First, notice that for Θ = Θ⋆ and
ϕπ = φ(Θ⋆) = 1 + ρ2

κ , the Jacobian of (b.4) is:

A⋄ =

[
−ρ

ρ2

κ

−κ ρ

]
, (b.7)

which has both trace and determinant equal to 0, implying that both eigenvalues are 0, satisfying
condition 1 of Theorem 2. Also, since the eigenvalues repeat, it is easy to check that the matrix has

eigenvector v =

[
ρ

κ

]
, and a generalized eigenvector

[
−1
0

]
.

Next, we show that condition 2 is also satisfied. Recall that the Jacobian of (b.4) is given by the
matrix A

A(Θ, ϕπ) =

[
−σγΘ ϕπ − 1
−κ ρ

]
,

and the trace of A(Θ, ϕπ) is TrA = ρ − σγΘ, while the determinant is DetA = κ(ϕπ − 1)− ρσγΘ. Then
the Jacobian of [TrA, DetA] is given by:

J =

[
−σγ −ρσγ

0 κ

]

The determinant of this matrix is non-zero as long as κσγ ̸= 0. This confirms that condition 2 of
Theorem 2 is satisfied. Next, to check condition 3, we need to construct the matrix Q(x, x), which is
a 2 × 1 vector that contains terms quadratic in (x, π) and independent of (Θ, ϕπ) in a Taylor series
expansion of F

(
x, π, Θ⋆, φ(Θ⋆)

)
around (x, π) = (0, 0). Since (b.4) has no higher-order terms in π, it

is easy to see that Q(x, x) can be written as:

Q =

[
0

−0.5κx2

]

Evaluating this at the eigenvector v, we have:

Q(v, v) =

[
0

−0.5κρ2

]
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Then, clearly the condition 3 of Theorem 2 is satisfied since

rank

[
−ρ κ−1ρ2 0
−κ ρ −0.5κρ2

]
= 2,

as long as ρ ̸= 0. Thus, the conditions for Theorem 2 are satisfied. Consequently, Theorem 2 states that
at Θ = Θ⋄, a homoclinic orbit emerges, which completes the proof of point 2 of Proposition 6.

Next, we prove point 1 of Proposition 6. Point 2 of Proposition 6 established that stable cycles exist
for Θ ∈ (Θ⋄, Θ⋆) and a homoclinic orbit exists at Θ = Θ⋄. Then Theorem 2 implies that since there is
no cycle or homoclinic orbit, there exists a saddle connection along which the economy moves from the
targeted to the untargeted steady state for 0 < Θ < Θ⋄. Any trajectory which originates on this saddle
connection remain bounded. Hence, there is global indeterminacy even when 0 < Θ < Θ⋄. Finally,
point 3 of Proposition 6 is also true because of similar reasons. When Θ > Θ⋆, the Hopf bifurcation
theorem implies that there are no cycles in this part of the parameter space. Consequently, Theorem 2
implies that there must be a saddle connection from the untargeted to targeted steady state. Since the
targeted equilibrium is already locally indeterminate for Θ > Θ⋆, there is also global indeterminacy.

C Proof of Proposition 4

The monetary policy rule which implements a unique equilibrium is given by

it = r + ϕππt + ϕr (r∗(xt)− r) with ϕπ > 1 and ϕr ≥ 1 (c.1)

Such a rule ensures the existence of a unique bounded equilibrium in which the economy remains that
the targeted steady state (x, π) = (0, 0) at all dates. To see this, we can plug in the policy rule (c.1)
into the IS equation (14). Then, the global dynamics of (xt, πt) are described by the following system
of ODEs:

ẋt = (ϕπ − 1)πt + (1 − ϕr)σ
(

e−γΘxt − 1
)

(c.2)

π̇t = ρπt + κ (ext − 1) (c.3)

This system nests our baseline economy if we set ϕr = 0. First, note that xt = πt = 0 clearly satisfies the
system of equations above, thus proving that the targeted steady state x = π = 0 is a valid equilibrium
with the policy rule (c.1).

First, note that the Jacobian of the system at any (x, π) can be written as:

J(x, π) =

[
(ϕr − 1)γΘe−γΘx ϕπ − 1

−κex ρ

]

The local determinacy property of the targeted equilibrium x = π = 0 is determined by the eigenvalues
of the matrix J(0, 0). The sum of the eigenvalues of J(0, 0) is given by ρ + (ϕr − 1)γΘ and the product
of the eigenvalues is given by the determinant of ρ(ϕr − 1)γΘ + κ(ϕπ − 1). A sufficient condition for
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Figure 4: Global dynamics depending on magnitude of Θ

both the sum and product of roots to be positive is that ϕπ > 1 and ϕr ≥ 1. If this condition is satisfied,
then for any Θ > 0, J(0, 0) has two eigenvalues with positive real parts, ensuring local determinacy of
the targeted equilibrium.

Second, notice that the trace of J(x, π) is given by ρ + (ϕr − 1)γΘe−γΘx, which is positive for any
(x, π) ∈ (−∞, ∞)2 as long as ϕr ≥ 1. Since the trace of the Jacobian does not change sign in the entire
domain, the Bendixson–Dulac theorem (Bendixson, 1901; Dulac, 1937) implies that there are no non-
constant periodic solutions lying entirely within (x, π) ∈ (−∞, ∞)× (−∞, ∞). Thus, we have global
determinacy as long as there is a unique constant solution.

We already know that x = π = 0 is a constant solution. Next, we show that this is the only constant
solution. To characterize all constant solutions, we set ẋ = π̇ = 0 in (c.2) and (c.3). This yields:

0 = (ϕπ − 1)π + (1 − ϕr)σ
(

e−γΘx − 1
)

and π =
κ

ρ
(ex − 1)

We can use the second expression to substitute out π from the first. Doing so yields a single equation
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in x, which describes all the steady state values of x:

F(x) =
ρ(ϕπ − 1)

κ
(ex − 1) + (1 − ϕr)σ

(
e−γΘx − 1

)
,

and x = 0 is a solution to F(x) = 0. To see that F(x) has no other zeros, note that the first derivative of
F(x) can be written as:

F′(x) =
ρ(ϕπ − 1)

κ
ex + (ϕr − 1)γσΘe−γΘx

A sufficient condition for this expression to be strictly positive for any x ∈ (−∞, ∞) is that (i) ϕπ > 1,
and (ii) ϕr ≥ 1. Thus, as long as ϕπ > 1 and ϕr ≥ 1, the only zero of F(x) is at x = 0, i.e., the targeted
steady state is the unique steady state. Consequently, x = π = 0 is the only bounded solution with the
policy rule (c.1).

C.1 Escape clause

In this section, we provide details of the escape clause policy described in Section 4.1. In particular,
we assume that the monetary policy is described by the simple inflation targeting rule it = r + ϕππt

as long as output is above some threshold level x̃. However, when output is below this threshold
xt < x̃, monetary policy switches to a strict-inflation targeting rule πt = 0 from that date on. In what
follows, we will assume that x < 0, i.e,, the threshold level of output lies below output in the targeted
equilibrium (x = 0). We will also assume that for a given Θ and ϕπ, x̃ is marginally higher than
the output in the untargeted steady state that would exist if monetary policy was described as in our
baseline model.

The strict-inflation targeting rule πt = 0 can be interpreted as a whatever-it-takes stance which
rules out any equilibria along which at any date the economy passes through a point (xt, πt) such that
xt < x̃ and πt ̸= 0. The first thing to notice is that πt = 0 is not an instrument rule like the policy
rule (6); it is instead a targeting rule and can be interpreted as a commitment by the central bank that
it will set the path of nominal interest rates to whatever level is required to ensure that πt = 0 at all
dates from then on. In terms of an instrument rule, this targeting rule is often expressed as the limit of
a standard inflation targeting Taylor rule it = r + ϕππt with ϕπ set to ∞.

To see how such a rule can rule out any equilibria along which at any date the economy passes
through a point (xt, πt) such that xt < x̃ and πt ̸= 0, suppose that at date t, the economy features a
level of output with some finite xt, which satisfies xt < x̃. Notice that the IS curve (with the inflation
targeting rule plugged in) and the Phillips curve in the context of our baseline model is given by:

ẋt = (ϕπ − 1)πt + σ(e−γΘxt − 1)

With ϕπ to ∞, then for ẋt to be finite, we need that πt = 0. Otherwise, if πt > 0, we would have
ẋt = +∞ and if πt < 0, we would have ẋt = −∞ In other words, if πt ̸= 0 at all dates, xt will grow or
shrink infinitely fast and become unbounded. Thus, the only bounded solution which satisfies the IS
and the Phillips curve is xt = πt = 0 at all dates. Thus, the combination of the IS curve and the policy
rule imply that πt = π̇t must equal 0 at all dates from then on. However, since xt < x̃, with πt0 set to
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0, the date t Phillips curve implies that π̇t = −κxt > 0, which contradicts the fact that πt = π̇t = 0.
This shows that the strict inflation targeting rule ensures that there exists no combination of (x, π)

with x < x̃ which satisfies both the IS curve and the Phillips curve, and thus does not constitute an
equilibrium. Thus, as long as x̃ > x, it follows that the untargeted steady state which features an
output-gap of x < 0 and inflation π < 0 cannot emerge in equilibrium, given monetary policy which
switches to a strict-inflation targeting rule πt = 0 if output falls below x̃.

However, for x̃ sufficiently close to x, such a policy stance need not rule out the stable cycle. To
see this, suppose that risk is moderately countercyclical Θ ∈ (Θ⋄, Θ⋆). Then since monetary policy still
follows the same rule as in our baseline as long as the economy is near the untargeted steady state,
we can still use the same proof strategy as in Appendix B.5 to prove the existence of the stable cycle.
The reason behind this is that the proof of the existence of the stable cycle in Appendix B.5 only uses
the properties of the ODEs describing the economy local to the targeted steady state. Since the escape
clause only kicks in once the economy is far away from the targeted steady state, the behavior of the
economy local to the targeted steady state is unchanged. Consequently, as long as x̃ is less than the
smallest value of output observed on the stable cycle, the escape clause cannot rule out the economy
from converging to a stable cycle surrounding the targeted steady state. Figure 3b presents an example
of such a situation in our calibrated economy when the escape clause is triggered if output declines
more than 5% below its targeted value. Since the untargeted steady state features a level of output
about 6% below its targeted level, but the maximum amplitude of output on the stable cycle is about
±2.5%, the policy rules out the untargeted steady state but fails to eliminate the stable cycle.

D Monetary-fiscal interaction

As described in Appendix A.3, the dynamics of xt, πt, bg
t are given by the three dimensional system of

non-linear ODEs:

ẋt = (ϕπ − 1)πt + σ
(

e−γΘxt − 1
)

(d.1)

π̇t = ρπt − κ (ext − 1) (d.2)

ḃg
t = (ϕπ − 1) b⋆πt + r (1 − ϕb) bg

t + (ϕπ − 1)πtb
g
t (d.3)

Separating the first-order terms which govern dynamics local to the steady state (x, π, bg) = (0, 0, 0)
and higher-order terms which dominate dynamics away from (0, 0, 0), we can equivalently rewrite the
3 dimensional system above as: ẋt

π̇t

ḃg
t

 = A

xt

πt

bg
t

+

σ
(
e−γΘxt − 1 + γσΘxt

)
−κ (ext − 1 − xt)

(ϕπ − 1)πtb
g
t

 , (d.4)
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where the matrix A is given by:

A =

−γσΘ ϕπ − 1 0
−κ ρ 0
0 (ϕπ − 1) b⋆ r(1 − ϕb)

 (d.5)

The determinacy properties of the economy with government debt depend on the eigenvalues of
the matrix A in (d.5). Since we have one predetermined variable bg, and two jump variables x, π, we
need 2 eigenvalues with positive real parts and one negative eigenvalue for local determinacy. The
characteristic polynomial associated with the matrix A can be written as:

P(z) = [r(1 − ϕb)− z] · Det(A† − zI) = 0, (d.6)

where A† is the leading principal minor of order 2 of the matrix A, and is given by

A† =

[
−γσΘ ϕπ − 1
−κ ρ

]
(d.7)

Then, we know that one of the eigenvalues of the system is given by z1 = r(ϕb − 1), while the two
remaining eigenvalues are the two roots of the quadratic equation Det(A† − zI) = 0. Furthermore, we
know that

Tr(A†) = γσ (Θ⋆ − Θ) and Det(A†) = κ [ϕπ − φ(Θ)] , (d.8)

where
Θ⋆ =

ρ

σγ
and φ(Θ) = 1 +

ργσΘ
κ

are the same as in our baseline model. In what follows, and we follow the nomenclature of Leeper
(1991) and consider two regimes based on the magnitudes of ϕπ and ϕb: (i) Active-Monetary, Passive-
Fiscal in which ϕπ > 1 and ϕb > 1, and (ii) Passive-Monetary, Active-Fiscal in which ϕπ ∈ [0, 1] and
ϕb ∈ [0, 1).28

D.1 Active-Monetary, Passive-Fiscal (AMPF)

It is worth noting that our baseline model is just a special case of this AMPF regime with ϕb → ∞ and
b = 0. As such, the determinacy properties of the AMPF regime with ϕb < ∞ and b ̸= 0 are identical
to that of our baseline economy without government debt. We show this next.

D.1.1 Local Determinacy

Passive fiscal policy (ϕb > 1) implies that the eigenvalue z1 = r(1 − ϕb) < 0. So local determinacy
requires that the other two eigenvalues have positive real parts. For this, we need the trace and

28It is easy to see that with ϕb = 1, the eigenvalue z1 = 0 and thus, we cannot have local determinacy in the knife-edge
case of ϕb = 1. Thus, we define the regions to exclude the case with ϕb = 1.
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determinant of the matrix A† be positive. We divide our analysis into three cases depending on how
countercyclical risk is and how aggressively monetary policy responds to inflation.

Case I: Mildly or moderately countercyclical risk 0 < Θ < Θ⋆ and 1 < ϕπ ≤ φ(Θ) First, consider
the case in which risk is not highly countercyclical Θ < Θ⋆, and monetary policy is active but not too
aggressive 1 < ϕπ < φ(Θ). Then, from (d.8), we know that even though the trace of A† is positive,
the determinant of A† is negative, implying that we have 2 negative and one positive root. Thus, the
targeted steady state has a 2-dimensional stable manifold around it, and hence, is locally indeterminate
in this configuration under the AMPF regime.

Case II: Mildly or moderately countercyclical risk 0 < Θ < Θ⋆, and ϕπ > φ(Θ) Next, consider
the case in which risk is mildly or moderately countercyclical 0 < Θ < Θ∗) and that monetary policy
is sufficiently active ϕπ > φ(Θ). With ϕπ > φ(Θ), (d.8) implies that both the determinant and trace
of A† are positive, implying that there are two positive and one negative root. Thus, the AMPF
regime delivers local determinacy if risk is not highly countercyclical and monetary policy responds
sufficiently aggressively to changes in inflation.

Case III: Highly countercyclical risk Θ > Θ⋆ Finally, when risk is highly countercyclical (Θ > Θ⋆),
equation (d.8) shows that the trace of A† is negative. Consequently, as in our baseline model, local
determinacy is not possible under the AMPF regime if risk is highly countercyclical Θ > Θ⋆.

Thus, as in our baseline model, in the AMPF regime, a large enough ϕπ can deliver local determi-
nacy as long as risk is not highly countercyclical. Next, we show that as in our baseline, no matter how
large ϕπ is, the AMPF regime cannot deliver global determinacy.

D.1.2 Global indeterminacy

Since the AMPF regime does not deliver local determinacy if risk is highly countercyclical (Θ > Θ⋆)

(Case III above), it follows that the equilibrium also features global indeterminacy. Similarly, if Θ < Θ⋆,
but 1 < ϕπ < φ(Θ) (Case I), the AMPF regime also does not deliver global determinacy. Thus, the
remaining case to consider is when risk is not highly countercyclical, Θ < Θ⋆, and monetary policy is
sufficiently aggressive, ϕπ > φ(Θ) (Case II). In this case the target equilibrium is locally determinate.
However, as in our baseline model, this does not translate into global determinacy. We start with the
case of moderately countercyclical risk.

Stable cycle (Moderately countercyclical risk) Similar to Appendix B.5, in the AMPF regime, the
economy undergoes a Hopf bifurcation at Θ = Θ⋆ = ρ/σγ, i.e. if Θ = Θ⋆, the eigenvalues of the
matrix A described in (d.5) has two purely imaginary roots. Then, the three dimensional generalization
of Theorem 1 guarantees that there exists Θ < Θ⋆ such that for any Θ ∈ (Θ, Θ⋆), any trajectory
(except on the one dimensional stable manifold) which starts in the neighborhood of (x, π, bg) =

(0, 0, 0) converge to a stable cycle along which the economy oscillates around the targeted steady state,
remaining bounded forever. We present this Theorem next for convenience.
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Theorem 3 (Hopf Bifurcation in n-dimensions). Consider a n ≥ 2 dimensional system

ẋ = Fµ(x), x ∈ Rn, µ ∈ R

with smooth F, which for all sufficiently small |µ| has the equilibrium x = 0, and the Jacobian DxFµ(0) has
eigenvalues given by Ω(µ) + ω(µ)i where I =

√
−1. Then, if the following conditions are satisfied:

1. At µ = 0, DxFµ=0(0) has two purely imaginary eigenvalues ±ω̄0 and no other eigenvalue of DxFµ=0(0)
is an integral multiple of ω̄0i.

2. Without loss of generality, for ease of exposition, assume that the first two out of the n eigenvalues are the
purely imaginary ones at µ = 0, and their continuation is given by:

λ1,2(µ) = Ω(µ)± ω(µ)i

Then, these eigenvalues cross the imaginary axis with non-zero speed: dΩ(0)/dµ ̸= 0.

Under the above conditions there exist a family of real periodic solutions x = x(t, ϵ), µ(ϵ) which has the
properties µ(0) = 0, x(t, 0) = 0, but x(t, ϵ) ̸= 0 for sufficiently small ϵ. The same holds for the period T(ϵ) and
T(0) = 2π/|ω(0)|.

To see that Theorem 3 applies, imposing Θ = Θ⋆ = ρ/σγ in (d.5), we can write A as:

A(Θ⋆) =

−ρ ϕπ − 1 0
−κ ρ 0
0 (ϕπ − 1) b r(1 − ϕb)


We know from the characteristic polynomial of A (equation (d.6)) that one of the eigenvalues of A(Θ⋆)

is given by z1 = r(1 − ϕb), which is negative in the AMPF regime since ϕb > 1. Then the sum of the
other two roots is the trace of the principal minor of order 2 associated with A(Θ⋆), which is given by
−ρ + ρ = 0. The zero trace means that the eigenvalues z2 and z3 cancel each other out. Furthermore,
the determinant of the principal minor of order 2 associated with A(Θ⋆) is given by

κ [ϕπ − φ(Θ⋆)] where φ(Θ⋆) = 1 +
ρ2

γσ
,

which is positive since we are considering the case with ϕπ > φ(Θ⋆). Together these properties of the
trace and determinant imply that the other two eigenvalues are purely imaginary, and thus condition
1 is satisfied. Furthermore, it is clear from inspection that the eigenvalues change smoothly in Θ, and
thus condition 2 of the Theorem is satisfied. This shows that, as in our baseline model, the economy
with non-zero government debt undergoes a Hopf bifurcation at Θ = Θ⋆ in the AMPF regime.

Finally, to show that the cycle is stable in the economy with government debt, as in our baseline
model, we need to show that the first Lyapunov coefficient is negative. While it is analytically cumber-
some to compute the first Lyapunov coefficient and show that it is negative, Figure 5 shows that under
our calibrated value of Θ = 28.1 (which corresponds to the moderately countercyclical risk case, i.e.,
Θ⋄ < Θ < Θ⋆) , any trajectory originating in the neighborhood of (x, π, bg) = (0, 0, 0) (depicted by the
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Figure 5: Stable cycle with moderately countercyclical risk in AMPF

orange trajectory) eventually converges to a stable limit-cycle (depicted by the gray trajectory) around
the targeted steady state when risk is moderately countercyclical Θ ∈ (Θ, Θ⋆). Thus, if ϕπ > φ(Θ),
and risk is moderately countercyclical Θ < Θ < Θ⋆, the AMPF regime delivers local but not global
determinacy, since along with the targeted equilibrium (x, π, bg) = (0, 0, 0), the stable cycle and all the
trajectories converging to the stable cycle also constitute bounded sequences which satisfy all equilib-
rium conditions.

Saddle Connection (Mildly countercyclical risk) Next, we consider the case in which risk is mildly
countercyclical Θ ∈ (0, Θ). First, notice that for any Θ > 0, as in our baseline model, there still exists
a untargeted steady state alongside the targeted steady state (x, π, bg) = (0, 0, 0). This can be seen by
setting ẋ = π̇ = ḃg = 0 in (a.22)-(a.24), which yields:

0 = (ϕπ − 1)π + σ
(

e−γΘx − 1
)

π =
κ

ρ
(ex − 1)

bg =
(ϕπ − 1) b

r (ϕb − 1)− (ϕπ − 1)π
π

As in Appendix B.3, combining the first two of these equations allows us to characterize the output
levels in all steady states as a solution to one equation in one unknown:

F(x) =
κ (ϕπ − 1)

ρ
(ex − 1) + σ

(
e−γΘx − 1

)
Since AMPF implies that ϕπ > 1, the same argument as in Appendix B.3 applies, and hence F(x)
has two zeros as long as Θ > 0: one targeted with x = π = bg = 0 and one untargeted steady
state. Since we are looking at the case with ϕπ > φ(Θ), as Appendix B.3 shows in the context of our
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baseline model, the untargeted steady state has lower output and inflation than the targeted steady
state. However, unlike in our baseline model (which featured only 2 jump variables), the existence of
a second steady state by itself does not automatically imply indeterminacy because now we have a
predetermined variable bg

t , and to prove global indeterminacy, we need to show that for at least some
initial value of bg

0 , there exist at least two bounded sequences {xt, πt, bg
t }∞

t=0 and {x̃t, π̃t, b̃g
t }∞

t=0 where
b̃g

0 = bg
0 .

To show this, we can invoke the 3-dimensional version of the Theorem 2 (which corresponds to
Corollary 7.1 in Kopell and Howard (1975)) to prove the existence of a saddle connection along which
the economy can transition from near the targeted steady state to the untargeted steady state. We
present this Theorem next:

Theorem 4 (Corollary 7.1 in Kopell and Howard (1975)). Let ẋ = Fµ,ν(x) be a two parameter family of
ODEs on Rn, n ≥ 2, with F smooth in all of its four arguments, such that Fµ,ν(0) = 0. Also assume:

1. dF0,0(0) has rank n − 1 and a zero eigenvalue with multiplicity 2 with v being the right-eigenvector
associated with the zero eigenvalue.

2. The mapping (µ, ν) →
(
det(dFµ,ν(0),σn−1dFµ,ν(0)

)
has a nonzero Jacobian at (µ, ν) = (0, 0), where

σn−1dFµ,ν(0) is the coefficient on the linear term in the characteristic polynomial of dFµ,ν(0).

3. Let Q(x, x) be the n × 1 vector containing the terms quadratic in x and independent of (µ, ν) in a Taylor
series expansion of Fµ,ν(x) around 0. Then [dF0,0(0), Q(v, v)] has rank n − 1.

Then there is a curve f (µ, ν) = 0 such that if f (µ0, ν0) = 0, then ẋ = Fµ0,ν0(x) has a homoclinic orbit. This
one-parameter family of homoclinic orbits (in (X, µ, ν) space) is on the boundary of a two-parameter family of
periodic solutions. For all |µ|, |ν| sufficiently small, if ẋ = Fµ,ν(x) has neither a homoclinic orbit nor a periodic
solution, there is a unique trajectory joining the critical points.

As in our baseline model, we use Θ and ϕπ as the bifurcation parameters. Condition 1 is clearly
satisfied since dF(0) is simply the A matrix in d.5. To see that point 1 is satisfied, imposing Θ = Θ⋆

and ϕπ = φ(Θ⋆) we can rewrite A in (d.5) as:−ρ
ρ2

κ 0
−κ ρ 0

0 ρ2

κ b r(1 − ϕb)

 ,

which clearly has rank 2, since the first 2 rows are linearly dependent. Also, the principal minor of
order two has trace and determinant zero, implying that the roots of the system are r(1 − ϕb), 0, 0.
Furthermore, one can compute the right-eigenvector associated with 0 to be:

v =


1
κ
ρ

− ρb
r(1−ϕb)

 (d.9)
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Next, the regularity condition 2 is satisfied since∣∣∣∣∣−r (1 − ϕb) ργσ [r (1 − ϕb) + ρ] γσ

κr (1 − ϕb) −κ

∣∣∣∣∣ = −κγσr2 (1 − ϕb)
2 ̸= 0

Finally, taking a second order Taylor approximation of the 3 ODEs (a.22)-(a.24) and imposing Θ = Θ⋆

and ϕπ = φ(Θ⋆), we have

Q (x, x) =


ρ2

2σx2

−κx2

ρ2

κ πbg


Evaluating at x = v (which is defined in (d.9), we get

Q (v, v) =


ρ2

2σ

−κ

− ρ2b
r(1−ϕb)


and we can finally verify that

rank


−ρ

ρ2

κ 0 ρ2

2σ

−κ ρ 0 −κ

0 ρ2

κ b r (1 − ϕb) − ρ2b
r(1−ϕb)

 = 3,

which implies that all three conditions for Theorem 4 are satisfied. Since we know that a stable cycle
only exists if risk is moderately countercyclical (Θ < Θ < Θ⋆), Theorem 4 implies that when risk is
mildly countercyclical (0 < Θ < Θ), then there must be a saddle connection along which the economy
can transition from the neighborhood of the targeted steady state to the untargeted steady state. As
in the baseline economy, any trajectory originating on this saddle connection remains bounded and
hence there are multiple bounded sequences which satisfy equilibrium. Thus, even when risk is mildly
countercyclical, there is global indeterminacy in the AMPF regime.

D.2 Passive-Monetary, Active-Fiscal (PMAF)

Active fiscal policy (0 ≤ ϕb < 1) implies that the eigenvalue z1 = r(1−ϕb) > 0. Then local determinacy
requires that one of the eigenvalues of A† be positive and the other negative.

D.2.1 Local Determinacy

Equation (d.8) shows that since ϕπ < 1 < φ(Θ), the determinant of A† is negative for any Θ > 0,
implying that the product of the two remaining roots is negative, which means that one of the roots of
A† is negative and one is positive. Thus, the PMAF regime delivers local determinacy of the targeted
equilibrium (x, π, bg) = (0, 0, 0) for any Θ, i.e., regardless of whether risk is mildly, moderately or
highly countercyclical.
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D.2.2 Global Determinacy

Next, we show that the PMAF regime eliminates the ways in which global determinacy manifests in
the AMPF regime. We start by explicitly showing that the PMAF regime eliminates the untargeted
steady state as well as the stable cycle. Following this demonstration, we then prove that the PMAF
regime delivers global determinacy: for any bg

0 , there is a unique x0, π0 such that the trajectory starting
at (x0, π0, bg

0) is the only trajectory which remains bounded. Moreover, this trajectory converges to the
targeted steady state (0, 0, 0) asymptotically.

Eliminating the stable cycle At Θ = Θ⋆ = ρ/σγ, the trace of A† equals zero (see equation (d.7)),
so the two eigenvalues z2 = −z3. Additionally, since the determinant of A† is negative, it means that
all three eigenvalues are real, and that the absolute value of z2 and z3 is identical, but the signs are
opposite. Thus, unlike in the AMPF regime, the system does not undergo a Hopf bifurcation since
the roots are not complex. Thus, the PMAF regime eliminates the stable cycle, which was one of the
manifestations of the global indeterminacy in the baseline model and the AMPF regime.

Eliminating the second steady state and saddle connection The PMAF steady state also prevents
the untargeted steady state from existing; only the targeted steady state survives. To see this, we can
set ẋ = π̇ = ḃg = 0 in (a.22)-(a.24), to get:

0 = (ϕπ − 1)π + σ
(

e−γΘx − 1
)

π =
κ

ρ
(ex − 1)

bg =
(ϕπ − 1) b

r (ϕb − 1)− (ϕπ − 1)π
π

As in Appendix B.3, combining the first two of these equations allows us to characterize the output
levels in all steady states as a solution to one equation in one unknown:

F(x) =
κ (ϕπ − 1)

ρ
(ex − 1) + σ

(
e−γΘx − 1

)
Taking the first derivative of this function:

F′(x) = −κ (1 − ϕπ)

ρ
ex − γσΘe−γΘx < 0

Since ϕπ ≤ 1 in the PMAF regime, F′(x) < 0 for all x ∈ (−∞, ∞). This means that the only zero of
F(x) is at x = 0, i.e., the targeted steady state. Hence, the PMAF regime also eliminates the untargeted
steady state, which was a manifestation of the global indeterminacy. Furthermore, since the untargeted
steady state does not exist in the PMAF regime, neither can the saddle connection along which the
economy can travel from the targeted to the untargeted steady state, as in the AMPF regime. Thus, the
PMAF regime eliminates all three manifestations of global indeterminacy which appear in our baseline
model and AMPF regime.
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Next, we can now prove that the PMAF regime delivers global determinacy. Notice that in the
system of 3 ODEs (d.4), the subsystem which describes the dynamics of xt, πt does not explicitly
depend on bg. This is easily seen by computing the Jacobian of (d.4) at any (x, π, bg) and noticing that
the entries in the first two rows of the 3rd column are zero:

J(x, π, bg) =


−σγΘe−γΘx ϕπ − 1 0

−κex ρ 0

0 (ϕπ − 1)(b⋆ + bg) r(1 − ϕb) + (ϕπ − 1)π


Thus, we can study the dynamics of (x, π) separately by focusing on the principal co-minor of the
Jacobian above, which we will refer to as J⋄(x, π):

J⋄(x, π) =

−σγΘe−γΘx ϕπ − 1

−κex ρ


We have already established that the determinant of the Jacobian evaluated at the unique steady state
x, π = 0, 0 is negative in the AMPF regime, which implies that A⋄ = J⋄(0, 0) has one negative and
one positive eigenvalue. It follows that local to (x, π) = (0, 0), there exists a one dimensional stable
manifold which can be written as x = Ψ(π) such that only trajectories for any π close to 0, only
trajectories beginning at

(
(Ψ(π), π

)
converge to (0, 0), while others diverge locally. However, we can

extend this argument for the existence of a 1-dimensional stable manifold x = Ψ(π) because in the
PMAF regime, the off-diagonal elements of J⋄(x, π) are always strictly negative for any (x, π) ∈ R2,
which implies that the subsystem which describes the dynamics of (x, π) is a competitive ODE system.
The existence of the 1-dimensional stable manifold x = Ψ(π), along which {xt, πt} → 0, 0, follows
from Hirsch’s theorem for competitive ODE systems (Hirsch, 1982).29 Furthermore, Hirsch (1982)
also shows that dΨ(π)

dπ < 0, which implies that the stable manifold is strictly monotone and that all
trajectories which start off this stable manifold become unbounded.

Next, notice that the dynamics of bg, which are described by (d.3) only depend on bg and πt and
can be written as:

ḃg
t = (ϕπ − 1) b⋆πt + r (1 − ϕb) bg

t + (ϕπ − 1)πtb
g
t

Since the dynamics of πt are determined separately from bg
t , this ODE is simply a linear non homoge-

neous ordinary differential equation in bg, and for a given initial condition bg
0 admits the solution:

bg
t = bg

0e
∫ t

0 µsds +
∫ t

0
νse

∫ t
s µτdτds

where µt = r(1 − ϕb) + (ϕπ − 1)πt and νt = (ϕπ − 1)b⋆πt. Next, as we take the limit t → ∞, we know
from the x, π subsystem that along the stable manifold (Ψ(π), π), we have limt→∞ πt → 0. Then to

29We thank Greg Kaplan for suggesting the use of Hirsch’s theorem.
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ensure that limt→∞ bg
t → 0, we have:

bg
0 = −(ϕπ − 1)b⋆

∫ ∞

0
πse−

∫ s
0 [r(1−ϕb)+(ϕπ−1)πτ ]dτds

This expression above can be interpreted as a mapping from π0 to bg
0 . Also, since the x, π subsystem

is competitive, it follows from Hirsch’s theorem that a higher π0 increases πt for all t > 0 and hence
the condition above implies a strictly positive relationship between bg

0 and the π0 which is needed to
ensure that bg

0 converges to 0 asymptotically. Thus, for a given bg
0 there exists a unique π0 for which

bg
0 does not grow unbounded and instead converges to 0 asymptotically. We can describe this relation

as π0 = Λ(bg
0). Together, the characterization above implies that for any given bg

0 , only the trajectory
originating at (Ψ(Λ(bg

0)), Λ(bg
0), bg

0) converges to (0, 0, 0) asymptotically, while all other trajectories
grow unbounded. Thus, in the PMAF regime, we have global determinacy.

E Extensions of the baseline model

E.1 Monetary policy rule with output-gap stabilization

We first consider the case in which monetary policy also responds to output-gap fluctuations. The
augmented rule can be written as:

it = r + ϕππt + ϕxxt, (e.1)

which nests the inflation targeting rule (6) if we set ϕx = 0. Given the interest rate rule (e.1), dynamics
of the output-gap xt, and inflation πt are described by:

ẋt = (ϕπ − 1)πt + ϕxxt −
(

r⋆(xt)− r
)

(e.2a)

π̇t = ρπt − κ (ext − 1) (e.2b)

How does ϕx affect local determinacy? As is well known in the RANK literature, allowing the nom-
inal rate to respond to output-gap fluctuations in addition to inflation reduces the burden on ϕπ to
ensure that the targeted equilibrium is locally determinate (see, e.g. Bullard and Mitra (2002)). The
same is true in the context of our HANK economy with countercyclical risk. Recall that in the infla-
tion targeting rule (6) (with ϕx = 0), a higher ϕπ could only guarantee local determinacy only if risk
was mildly or moderately countercyclical (0 < Θ < Θ⋆). However, if risk is highly countercyclical
(Θ ≥ Θ⋆), no finite ϕπ can deliver local determinacy. However, as Proposition 7 shows, a mone-
tary policy rule which responds to output-gap fluctuations can always guarantee local determinacy, no
matter how countercyclical risk is.

Proposition 7 (Output-gap stabilization). For any Θ ≥ 0, the combination of a large enough ϕx and ϕπ is
sufficient for local determinacy of the targeted steady state. In particular, local determinacy requires:

ϕπ > φ(Θ) = 1 +
ρσγΘ

κ
and ϕx > σγ (Θ − Θ⋆) (e.3)
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Proof. With ϕx ̸= 0, for (x, π) close to the targeted steady state (0, 0), the dynamics of the system
(16a)-(16b) are governed by the following system:[

ẋt

π̇t

]
= A

[
xt

πt

]
+O

(
x2) for(x, π) → (0, 0),

where A is given by

A =

[
ϕx − σγΘ ϕπ − 1

−κ ρ

]
,

Since both x and π are jump-variables, local determinacy requires that both eigenvalues of A have a
positive real part. As is well known, the sum of the two eigenvalues of A, denoted by z1 and z2, is
given by the trace of A, while their product is given by the determinant of A:

z1 + z2 = ρ + ϕx − σγΘ,

z1 × z2 = κ(ϕπ − 1) + ρϕx − ρσγΘ

Since this is a two dimensional system, either both z1 and z2 are real, or they are complex conjugates.
Thus, for z1 and z2 to both have positive real parts, it is sufficient that both the sum and product of
z1, z2 be positive. In other words, a sufficient condition for local determinacy is

ϕπ +
ρ

κ
ϕx > φ(Θ) = 1 +

ρσγΘ
κ

and ϕx > σγ (Θ − Θ⋆) (e.4)

This condition is satisfied if (ϕπ, ϕx) jointly satisfy the following condition

ϕπ > φ(Θ) and ϕx > σγ (Θ − Θ⋆) ,

which is the same condition as in Proposition 7. For mildly or moderately countercyclical risk 0 < Θ <

Θ⋆, the above expression shows that setting ϕx = 0 and ϕπ > φ(Θ) is sufficient for local determinacy.
This is the same condition as in Proposition 2. However, when risk is highly countercyclical Θ ≥ Θ⋆,
setting ϕx = 0 is no longer enough for local determinacy. Local determinacy now requires a large
enough ϕx > σγ(Θ − Θ⋆) alongside ϕπ > φ(Θ).

Consistent with Proposition 2, (e.3) shows that if risk is for mild or moderately countercyclical,
Θ ∈ (0, Θ⋆], then ϕx = 0 is sufficient for local determinacy as long as ϕπ is large enough: ϕπ > φ(Θ).
However, if risk is highly countercyclical (Θ > Θ⋆), setting ϕx slightly above 0 is not sufficient, and local
determinacy requires ϕx > σγ(Θ − Θ⋆) > 0, alongside a large enough ϕπ. Overall, (e.3) shows that the
more countercyclical risk, the higher ϕπ and ϕx need to be to ensure local determinacy; raising only
one of the two is not sufficient. To understand why a high enough ϕx can guarantee local determinacy,
it is again useful to concentrate on the IS curve. With ϕx ̸= 0, the IS curve (e.2a) can be written as:

ẋt = (ϕπ − 1)πt + ϕxxt︸ ︷︷ ︸
destabilizing

−σγΘxt +O(x2) f or (x, π) → (0, 0)
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Relative to the case with ϕx = 0, the expression above shows that in addition to the (ϕπ − 1)π term
which supplies the destabilizing forces, now an additional term, ϕxx, also generates destabilizing
dynamics. When x is away from its steady state value, say x > 0, this term makes ẋ more positive, thus
pushing x further away from 0. The stabilizing force, provided by the term, −σγΘx is the same as in
the case with ϕx = 0. Thus, as (e.3) shows, a large enough ϕπ and ϕx make it easier for the destabilizing
forces to overwhelm the stabilizing force, generating local determinacy.

While the combination of a high enough ϕπ and ϕx helps resolve the problem of local determinacy,
it does little to resolve the problem of global indeterminacy. All the forces which contributed to the
existence of multiple equilibria in the baseline still continue to operate regardless of how large ϕx is.

First, with ϕx > 0, no matter how large, the untargeted steady state (x, πg) continues to exist, and
features lower output than the targeted steady state as well as below target inflation. In fact, the larger
the ϕx > 0, the lower are output and inflation in the untargeted steady state. To see this, note that the
ẋ = 0 and π̇t = 0 nullclines with ϕx ̸= 0, imply that in any steady state, (x, π) must satisfy:

0 = (ϕπ − 1)π + ϕxx + σ
(

e−γΘx − 1
)

0 = ρπ − κ (ex − 1)

Clearly, (0, 0) still satisfies both equations. To see that the untargeted steady state still exists, combine
the two equations to eliminate π, to get an expression exclusively in terms of x:

F(x) =
κ (ϕπ − 1)

ρ
(ex − 1) + ϕxx + σ

(
e−γΘx − 1

)
,

and any x which solves F(x) = 0 constitutes a steady state. Again, clearly x = 0 solves this equation.
The derivative of F(x) is given by:

F′(x) =
κ (ϕπ − 1)

ρ
ex + ϕx − σγΘe−γΘx,

which, evaluated at x = 0 yields

F′(0) =
κ

ρ

(
ϕπ +

ρ

κ
ϕx − φ (Θ)

)
where φ(Θ) = 1 +

ρσγΘ
κ

,

If ϕπ + ρ
κ = φ(Θ), then F′(0) = 0 and F(x) is tangent to the x-axis at x = 0, implying that it is the only

zero of F(x) since F(x) is declining in the region x = 0 and increasing in the region x > 0. This is the
knife edge case in which there is a unique steady state. If instead, we impose the condition for local
determinacy of the targeted equilibrium, ϕπ + ρ

κ ϕx > φ(Θ), then F′(0) > 0. Since limx→−∞ F(x) → ∞,
there must be at least one intersection with x < 0 and F′(x) < 0. Since F(x) is strictly convex, this
intersection is unique. Further, note that dF(x)/dϕπ < 0 for x < 0 by inspection. Thus, by the implicit
function theorem, we have dx/dϕπ < 0.

The existence of the second steady state again implies that the equilibrium is globally indeterminate,
because the two steady states imply that there are at least two bounded trajectories which satisfy all
equilibrium conditions: (xt, πt) = (0, 0) and (xt, πt) = (x, π). However, separate from the second
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steady state, as in the baseline, there are other equilibria as well, and as with ϕx = 0, the untargeted
steady state is not the only other bounded trajectory. Proposition 8 provides an exhaustive characteri-
zation of global dynamics for a given cyclicality Θ as a function of ϕx.

Proposition 8. For a given Θ > 0, assume that ϕπ > φ(Θ). Then, defining ϕ⋆
x = σγ(Θ − Θ⋆), the global

dynamics of the economy with monetary policy rule (e.1) can be split into 3 regions:

1. ϕx < ϕ⋆
x (small ϕx): If ϕx < ϕ⋆

x , trajectories which start in the neighborhood of (0, 0) converge to the
the targeted steady state, and thus, the targeted equilibrium is both locally and globally indeterminate. In
addition to the multiple trajectories originating near the targeted steady state which remain bounded, there
also exists a saddle-connection along which the economy can transition from the neighborhood of the
untargeted steady state to the targeted steady state. All trajectories which originate at any point on this
saddle connection also remain bounded.

2. ϕx ∈
[
ϕ⋆

x , ϕx
]

(medium ϕx): ∃ϕx > ϕ⋆
x , such that for any ϕx ∈

[
ϕ⋆

x , ϕx
]
, the targeted equilibrium is

locally determinate, but globally indeterminate. Trajectories which start in the neighborhood of the targeted
steady state initially diverge away from it, but eventually remain bounded and converge to a stable limit-
cycle surrounding the targeted steady state. The amplitude and periodicity of the cycles is increasing in ϕx

in this range. At the upper limit of this interval, ϕx = ϕx, the limit-cycles are absorbed into a homoclinic
orbit. At the other end of this range, ϕx = ϕ⋆

x , the limit-cycles collapse onto the targeted steady state. The
equilibrium is still globally indeterminate since the higher-order terms ensure that any trajectory starting
in the neighborhood of (0, 0) converge back to (0, 0).

3. ϕx > ϕx (large ϕx): For ϕx > ϕx, the targeted equilibrium is locally determinate but still globally
indeterminate. There are no stable limit-cycles in this range of ϕx, but the equilibrium is still globally
indeterminate, owing to the existence of a saddle-connection, along which the economy can transition from
the neighborhood of the targeted steady state to the untargeted steady state. Any trajectory which originates
on this saddle connection also remains bounded.

No matter how large ϕπ and ϕx are, the equilibrium is still globally indeterminate if risk is even mildly
countercyclical.

Proof. Given the interest rate rule it = r + ϕππt + ϕxxt, the dynamics of xt and πt are given by the
ODEs:

ẋ = (ϕπ − 1)π + ϕxxt + σ
(

e−γΘx − 1
)

π̇ = ρπ − κ (ex − 1)

We can rewrite this system in matrix form as:[
ẋt

π̇t

]
=

[
ϕx − σγΘ ϕπ − 1

−κ ρ

]
︸ ︷︷ ︸

A

[
xt

πt

]
+

[
σ
(
e−γΘxt − 1 + γΘxt

)
−κ (ex − 1 − xt)

]
(e.5)
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Notice that the matrix A has has trace equal to zero at ϕx = ϕ⋆
x = σγΘ − ρ = σγ(Θ − Θ⋆), where

Θ⋆ = ρ
σγ . Evaluating (e.5) at ϕx = ϕ⋆

x , we have:

[
ẋt

π̇t

]
=

[
−ρ ϕπ − 1
−κ ρ

]
︸ ︷︷ ︸

A⋆

[
xt

πt

]
+

[
σ
(

e−
ρ
σ xt − 1 + ρ

σxt

)
−κ (ex − 1 − xt)

]
, (e.6)

which is identical to (b.5) in the model with ϕx = 0 (See Appendix B.5 for details). Consequently,
all the conditions for Theorem 1 are satisfied, and the system undergoes a Hopf bifurcation at ϕx =

ϕ⋆
x . Consequently, ∃ϕx > ϕ⋆

x such that for ϕx ∈ (ϕ⋆
x , ϕx), trajectories starting in the neighborhood of

(0, 0) initially diverge, but then converge to a stable cycle which surrounds the targeted steady state.
Since all these trajectories remain bounded, in this region ϕx ∈ (ϕ⋆

x , ϕx), the equilibrium is globally
indeterminate, even though the targeted steady state is unstable (locally determinate). For ϕx = ϕ⋆

x , the
stable cycles collapse onto (0, 0). The equilibrium in this case is still globally indeterminate because the
higher-order terms of the system push any trajectory originating near the targeted steady state towards
(0, 0). Next, evaluating A⋆ in (e.6) at ϕπ = φ(Θ) yields the same matrix as A⋄ in (b.7) in Appendix B.5.
Furthermore, since setting ϕx ̸= 0 does not change the higher-order terms of the system, by the same
reasoning as in Appendix B.5, all the conditions of Theorem 2 are also satisfied with ϕx ̸= 0. Thus, it
follows that for ϕx = ϕx, the stable cycles get absorbed into a homoclinic orbit. This proves point 2 of
Proposition 8.

For ϕx > ϕx, while the stable cycles disappear but the equilibrium is still globally indeterminate.
This is because Theorem 2 guarantees the existence of a saddle connection along which the economy
can transition from the neighborhood of the targeted steady state to the untargeted steady state. All
trajectories beginning from any point on this saddle connection always remain bounded, thus proving
the existence of multiple bounded trajectories which satisfy all equilibrium conditions. Thus even
though for a large ϕx, the targeted equilibrium is locally determinate, there is global indeterminacy.
This proves point 3 of Proposition 8.

For ϕx < ϕ⋆
x , Proposition 7 proves that the targeted equilibrium is locally indeterminate. Thus, the

equilibrium is also globally indeterminate. In addition, Theorem 2 ensures the existence of a saddle
connection along which the economy can converge from the neighborhood of the untargeted steady
state to the targeted steady state. This proves point 1 of Proposition 8.

Proposition 8 shows that no combination of ππ and ϕx can ensure global determinacy. Figure 6
depicts the non-fundamental fluctuations that can emerge in or HANK economy. To plot this Figure,
we set Θ = 28.1, which is the model estimate of Bilbiie, Primiceri and Tambalotti (2023).30 Figure 6
plots global dynamics as a function of ϕx when risk is moderately countercyclical Θ ∈ (Θ, Θ⋆). The
dotted-red curve depicts the π̇ = 0-nullcline and the dotted-blue curve depicts the ẋ = 0-nullcline.
Figure 6a plots global dynamics with ϕx = 0.01, which lies in the range ϕx ∈ (ϕ⋆

x , ϕx): in this range,
trajectories starting in the neighborhood of (0, 0) (dark gray trajectory) converges to the stable cycle

30Since Θ = 28.1 < 31.1 = Θ⋆, we have ϕ⋆
x = σγ(Θ − Θ⋆) = −0.0041. In other words, the small ϕx region corresponds to

the interval ϕx ∈ (−∞,−0.0041), which we ignore, because the sensible range of ϕx is in the interval [0, ∞). Consequently,
Figure 6 only plots dynamics in the medium ϕx (i.e., ϕx ∈

[
ϕ⋆

x , ϕx
]
) and large ϕx (i.e., ϕx > ϕx cases.
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Figure 6: Global dynamics with ϕx > 0 when Θ < Θ⋆

(black trajectory).31 In contrast, Figure 6b features a larger ϕx = 0.5, which is the standard calibration
of the Taylor rule (Taylor, 1993) and shows that there exists a saddle connection from the targeted to
the untargeted steady state. A trajectory beginning at any point on this saddle-connection remains
bounded, and constitutes a bounded sequence which satisfies equilibrium. The same is true for more
countercyclical risk, Θ > Θ⋆.
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Figure 7: Global dynamics as a function of ϕx when Θ > Θ⋆

Figure 7 depicts global dynamics when risk is highly countercyclical risk (Θ > Θ⋆). In particular,
we set Θ = 32, which given our calibration is larger than Θ⋆ = 31.1. We impose ϕπ > φ(Θ) in all plots.
Figure 7a plots dynamics when ϕx < σγ(Θ − Θ⋆). As stated in Propositions 7 and 8, in this region of
ϕx, the equilibrium is both locally and globally indeterminate. The Figure shows a saddle connection
along which the economy moves from the neighborhood of the untargeted steady state to the targeted
steady state. Figure 7b plots dynamics in the region where ϕx ∈ [ϕ⋆

x , ϕx]. The black trajectory depicts a
stable cycle. All trajectories originating near the targeted steady state initially diverge away from it but
then converge to the stable cycle and remain bounded. Thus, while the targeted equilibrium is locally

31In addition, trajectories originating near the untargeted steady state also converge to the cycle as in Figure 2b, but we
omit these trajectories from Figure 6a to avoid clutter.
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determinate, it is globally indeterminate. Finally, Figure 7c plots global dynamics in the case with
ϕx > ϕx. Propositions 7 and 8 show that in this region the targeted equilibrium is locally determinate
but globally indeterminate. The black trajectory depicts a saddle connection along which a trajectory
starting near the targeted steady state diverges away from it, only to converge to the untargeted steady
state. Thus, Figures 6 and 7 show that for any Θ > 0, the equilibrium is always globally indeterminate,
regardless of the combination of ϕπ, ϕx.

E.2 Inertial policy rule

The monetary policy rule we have studied so far only react to changes in current economic conditions.
However, empirically, many central banks have been noted to have a tendency to only adjust the policy
rate gradually in response to changes in economic conditions. Such inertial rules have been shown to
be desirable from the point of view of delivering local determinacy (Bullard and Mitra, 2007), and for
various other reasons (Woodford, 2003b). In continuous time, such a rule can be written as:32

dit = α
[
it − r − ϕππt

]
dt, (e.7)

where α controls the relative weight on inflation in the past relative to current inflation. A smaller α

in (e.8) implies a larger weight on past inflation relative to current inflation, and that the rule is more
backward-looking. In fact, the limit α → 0 corresponds to the price-level targeting (PLT) limit. In the
limit α → ∞ converges to the policy rule (6), which only responded to changes in current inflation,
and is not backward-looking at all. Instead of working with (e.7), we transform it into the equivalent
average-inflation targeting (AIT) rule:

it = r + ϕππb
t , where πb

t = α
∫ t

−∞
e−α(t−τ)πτdτ for α ∈ (0, ∞), (e.8)

(e.8) shows that the inertial behavior is equivalent to the central bank responding to changes in the
weighted-average of past and current inflation (denoted πb

t ), instead of just changes in current inflation.
The dynamics of the economy under an AIT rule are described by a 3-dimensional system of ODEs:

ẋt = ϕππb
t − πt − (r⋆(xt)− r) (e.9)

π̇t = ρπt − κ (ext − 1) (e.10)

π̇b
t = α

(
πt − πb

t

)
, (e.11)

where (e.11) is derived by taking a time-derivative of πb
t described in (e.8). Imposing steady state in

(e.9)-(e.11), it is easy to see that x = 0 and π = πb = 0 is still a steady state (the targeted steady state).
Compared to the purely inflation targeting rule (6), a sufficiently backward-looking inertial rule

(e.8) can guarantee local-determinacy of the targeted steady state, even if risk is highly countercyclical

32This rule is analogous to the more familiar discrete-time specification for such rules:

1 + it = ϱ (1 + it−1) + (1 − ϱ) [1 + r + ϕππt] ,

where ϱ ∈ (0, 1) captures the idea that the policy rate at date t displays inertia: 1 + it depends not just on the deviation of
current inflation from target, but also depends on what the policy rate was set to in the past 1 + it−1.
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(Θ > Θ⋆). This is formalized in Proposition 9.33

Proposition 9 (Local determinacy with an inertial rule). For a given Θ > 0, and any πb
0 in the small

neighborhood of the targeted steady state x = 0, π = πb = 0, there exists a unique {x0, π0}, such that the
trajectory {xt, πt, πb

t }∞
t=0 remains bounded inside this neighborhood, as long as α is sufficiently close to 0 and

ϕπ > φ(Θ). In other words, the targeted equilibrium is locally determinate if

ϕπ > φ(Θ) and α ∈
[
0, α⋆(θ)

)
,

If risk is mildly or moderately countercyclical α⋆(Θ) = ∞, but if risk is highly countercyclical, then α⋆(Θ) < ∞
(the exact expression is available in proof below).

Proof. With the inertial rule α > 0, for (x, π, πb) close to the targeted steady state (0, 0, 0), the dynamics
of the system (e.9), (e.10) and (e.11) are governed by the following system: ẋt

π̇t

π̇b
t

 = A

 xt

πt

πb
t

+O
(
x2) for(x, π, πb) → (0, 0, 0),

where A is given by

A =

−σγΘ −1 ϕπ

−κ ρ 0
0 α −α

 ,

Since we have one predetermined-variable πb and two jump-variables x, π, for the targeted steady
state to be locally determinate, we need one negative root and two roots with positive real parts. This
would ensure that for a given πb

0 in the neighborhood of the targeted steady state, there exists a unique
(x0, π0) such that the trajectory {xt, πt, πb

t }∞
t=0 remains bounded.

To see that this is the case when ϕπ is large enough and α is small enough, we need to characterize
the eigenvalues of A. The characteristic polynomial associated with A can be written as:

P (z) = a0z3 + a1z2 + a2z + a3

33With an inertial rule, the definition of local determinacy is slightly different relative to our baseline model. This is
because our baseline model featured two forward looking variables x, π and so local determinacy required two eigenvalues
with positive real parts. In contrast, the inertial rule adds as predetermined variable πb, and so local determinacy requires
two eigenvalues with positive real parts, and one negative eigenvalue. In other words, local determinacy of the targeted
equilibrium now requires that for a given value of the predetermined variable πb

0 in a small neighborhood of the targeted
steady state, there exist a unique (x0, π0) starting from which the trajectory {xt, πt, πb

t }∞
t=0 satisfies all equilibrium conditions

and remains bounded. Global determinacy, then, requires that from any given value of the predetermined variable πb
0 (not

necessarily in the neighborhood of the targeted steady state), there exists a unique (x0, π0), starting from which the trajectory
{xt, πt, πb

t }∞
t=0 remains bounded while satisfying all equilibrium conditions.
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where

a0 = −1

a1 = −σγ (Θ − Θ⋆)− α

a2 = κφ(Θ)− ασγ (Θ − Θ⋆)

a3 = −ακ
(

ϕπ − φ(Θ)
)

,

where

φ(Θ) = 1 +
ρ2

κ

(
Θ
Θ⋆

)
The stability of the system is governed by the pattern of sign changes in the sequence:

a0, a1, − a0a3 − a1a2

a1
, a3

For the Jacobian to have one negative root and two roots with positive real parts, we need the sequence
to have 2 sign changes. The first term in this sequence is always −. Imposing ϕπ > φ(Θ) guarantees
that the fourth term in the sequence is also −. To determine the sign of the other two terms in the
sequence, we need to consider two cases:

(i) Highly countercyclical risk (Θ > Θ⋆) : In this case, for any α > 0, the second term in the
sequence a1 is negative. So the sequence is −,−, ?,−. Local determinacy then requires that the
third term in the sequence be positive (two sign changes) for local determinacy, i.e,

σγ (Θ − Θ⋆)
[
κφ (Θ)− ασγ (Θ − Θ⋆)− α2]+ ακϕπ

σγ (Θ − Θ⋆) + α
> 0,

which can be reformulated as:
ψ (α) < ϕπ,

where

ψ(α) = −σγ (Θ − Θ⋆)

ακ

[
κφ (Θ)− ασγ (Θ − Θ⋆)− α2] (e.12)

We know that

ψ′ (α) =
σγ (Θ − Θ⋆)

κ

[
1 +

κφ (Θ)

α2

]
> 0 ψ (0) → −∞ ψ (∞) → ∞,

which, by the intermediate-value theorem implies that ∃α⋆(Θ) ∈ (0, ∞), such that ψ
(

α⋆(Θ)
)
=

ϕπ and ψ(α) < ϕπ for all α ∈
(

0, α⋆(Θ)
)

. In fact, we can write α⋆(Θ) as:

α⋆(Θ) =
1
2


κϕπ − σ2γ2 (Θ − Θ⋆)2

σγ (Θ − Θ⋆)
+

√√√√√[
κϕπ − σ2γ2 (Θ − Θ⋆)2

]2

σ2γ2 (Θ − Θ⋆)2 + 4κφ (Θ)


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Thus, even when risk is highly countercyclical Θ > Θ⋆ local determinacy is ensured as long as α

is small enough, i.e., the rule is backward-looking enough.

(ii) Mildly or moderately countercyclical risk (Θ ≤ Θ⋆) : In this region, we need to check two cases.
First consider the case in which α is large: α ≥ σγ(Θ⋆ − Θ). In this case, the second term is still
negative, and so the sequence is −,−, ?,−. Thus, we need the third term in the sequence to be
positive. For this to be the case, we need

ϕπ > ψ (α) ,

where ψ(α) is the same as in (e.12). However, now with Θ < Θ⋆, we have:

ψ′ (α) =
σγ (Θ − Θ⋆)

κ

[
1 +

κφ (Θ)

α2

]
< 0 ψ

(
σγ(Θ⋆ − Θ)

)
= φ(Θ) ψ (∞) → −∞,

Thus, the third term is always positive in this case. α ≥ σγ(Θ⋆ − Θ). Thus, we have local
determinacy for any α in this region.

Finally, the remaining case is when α is small: 0 < α < σγ(Θ⋆ − Θ). In this case, the second
term of the sequence is positive. So the sequence is −,+, ?,−. Thus, there are two sign changes
regardless of the sign of the third term, and we have local determinacy for any α in this region.

Overall, if Θ ∈ (0, Θ⋆], the targeted equilibrium is locally determinate for any α ∈ (0, ∞), as long
as ϕπ > φ(Θ). In other words, for Θ ∈ (0, Θ⋆], we have α⋆(Θ) = ∞. However, if Θ > Θ⋆, ϕπ > φ(Θ)

is no longer sufficient for local determinacy. Local determinacy requires ϕπ > φ(Θ) alongside a small
enough α: α < α⋆(Θ), i.e., a rule which is also backward-looking enough.

Proposition 9 shows that when risk is mildly or moderately countercyclical (Θ < Θ⋆), any α ≥ 0
delivers local determinacy, as long as ϕπ > φ(Θ). This follows directly from the fact that in the limit
as α → ∞, the inertial rule (e.8) converges to the policy rule (6), and we know from Proposition 2 that
if 0 < Θ < Θ⋆, then ϕπ > φ(Θ) is sufficient for local determinacy. However, even when Θ ≥ Θ⋆, a
small enough α ensures that the targeted equilibrium is locally determinate. In fact, a corollary of this
result is that in the PLT limit, α → 0, the targeted equilibrium is always locally determinate regardless
of how countercyclical risk may be.34 Thus, a sufficiently backward-looking inertial rule ensures local
determinacy of the target equilibrium, no matter how countercyclical risk is.

However, this improved performance in terms of ensuring local determinacy does not translate into
global determinacy. In fact, Proposition 11 shows that as long as risk is countercyclical, the equilibrium
is always globally indeterminate, no matter how backward-looking the rule. First, as the Proposition
below states, inertial rules do not eliminate the second steady state; in fact for a given ϕπ, the second
steady state is the same as in our baseline economy and is unaffected by α (which measures how
backward looking the rule is).

34Bilbiie (2024) also shows that a PLT rule guarantees local-determinacy in this THANK model. However, that paper does
not study whether such a rule ensures global determinacy.

65



Proposition 10 (Multiple Steady states). For any Θ > 0, there exist two steady states in which the output-gap
and inflation are unaffected by the value of α. The targeted steady state is always one of the steady states. Further-
more, if the targeted steady state is locally determinate, then the untargeted steady state is locally indeterminate
and has a negative output gap and inflation below target.

Proof. The stationary points of the economy are not affected by changing the policy rule from (6) to
the AIT policy rule (e.8). With the AIT policy rule, the steady state is represented by three nullclines,
which can be written as:

0 = ϕππb − π + σ(e−γΘx − 1)

0 = ρπ − κ (ex − 1)

0 = α
(

π − πb
)

Since the third nullcline implies that π = πb, the first two nullclines are the same as in our baseline.
Thus, the exact value of α does not affect the level of output and inflation in the untargeted steady
state, but it does affect the stability properties. The steady state value of x in the untargeted steady
state is still defined by the same equation as in the baseline model:

F(x) =
κ (ϕπ − 1)

ρ
(ex − 1) + σ

(
e−γΘx − 1

)
,

and the same argument as in Appendix B.3 establishes the existence of the untargeted steady state.
Next, we show that if ϕπ > φ(Θ), then the untargeted steady state is locally indeterminate.

Suppose that ϕπ > φ(Θ). Then, the Jacobian of the system (e.9)-(e.11) evaluated at the untargeted
steady state can be written as:

Ax =

−σγΘe−γΘx −1 ϕπ

−κex ρ 0
0 α −α


Since we have one predetermined-variable πb and two jump-variables x, π, for the untargeted steady
state to be locally determinate, we need one negative root, and two roots with positive real parts. This
would then ensure that for a given πb

0 in the neighborhood of the untargeted steady state, there exists
a unique (x0, π0) such that the trajectory {xt, πt, πb

t }∞
t=0 remains bounded. If, for a given πb

0, there exist
multiple (x0, π0) for which the trajectory {xt, πt, πb

t }∞
t=0 remains bounded, then the untargeted steady

state is locally indeterminate.
The characteristic polynomial of the Ax is given by:

P (z) = a0z3 + a1z2 + a2z + a3
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where

a0 = −1

a1 = −σγ
(

Θe−γΘx − Θ⋆
)
− α

a2 = κex
(

1 +
ρσγΘ

κ
e−(1+γΘ)x

)
− ασγ

(
Θe−γΘx − Θ⋆

)
a3 = −ακex

[
ϕπ − 1 − ρσγΘ

κ
e−(1+γΘ)x

]
The stability of the system is governed by the pattern of sign changes in the sequence:

a0, a1, − a0a3 − a1a2

a1
, a3

For the Jacobian to have one negative root and two roots with positive real parts, we need the sequence
to have 2 sign changes. Recall from (b.3) in Appendix B.4, that if ϕπ > φ(Θ), then we have:

ϕπ − 1 − ρσγΘ
κ

e−(1+γΘ)x < 0

This implies that the fourth term on the sequence is +. Clearly, the sign of the first term in the sequence
is −. If α > σγ

(
Θ⋆ − Θe−γΘx), then the sign of the second term in the sequence is −. So we have:

−,−, ?,+, and no matter what the sign of the third term is, we cannot have two sign changes. Thus,
with large α, we have 2 negative and 1 positive root, which implies that for a given πb, there are
multiple bounded trajectories in the neighborhood of the untargeted steady state which converge to it.

Now consider the case in which α ≤ σγ
(
Θ⋆ − Θe−γΘx). With small α, the sequence of signs is now

−,+, ?,+. So if the third term is negative, then a small α can ensure that the untargeted steady state is
locally determinate. However, this is not the case, and the third term is positive:

ακex (ϕ⋄ − ϕπ) + σγ
[
Θ⋆ − α

σγ − Θe−γΘx
] {

κexϕ⋄ + ασγ
(
Θ⋆ − Θe−γΘx)}

σγ
(

Θ⋆ − α
σγ − Θe−γΘx

) > 0,

where ϕ⋄ = 1 + ρσγΘ
κ e−(1+γΘ)x, and we have used the fact that if ϕπ > φ(Θ), then ϕπ < ϕ⋄. Further-

more, we know that Θ⋆ ≥ Θe−γΘx + α
σγ > Θe−γΘx in this case. So even with small α, the sequence is

−,+,+,+, which only has one sign change. Thus, regardless of the magnitude of α, the untargeted
steady state is locally indeterminate as long as Θ > 0 and ϕπ > φ(Θ).

Proposition 10 showed that as long as Θ > 0, the untargeted steady state always exists, and is
locally indeterminate as long as ϕπ > φ(Θ), regardless of the magnitude of α. Consequently, there is
always global indeterminacy. This is because local determinacy of the untargeted steady state implies
that for a given πb

0 in the neighborhood of the untargeted steady state there exists multiple (x0, π0)

such that there are at least two trajectories {xt, πt, πb
t }∞

t=0 which remain bounded forever. In fact, since
the untargeted steady state has two negative and one positive eigenvalue, there exists a 2 dimensional
stable manifold containing the untargeted steady state. Any trajectory which originates in this stable
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manifold remains bounded, in fact it converges to the untargeted steady state. Consequently, there is
at least one πb

0, for which there exists multiple (x0, π0) such that the trajectories {xt, πt, πb
t }∞

t=0 satisfy
equilibrium and always remain bounded. There are even more bounded trajectories which start close
to the targeted steady state, as Proposition 11 shows.

Proposition 11. Suppose that risk is countercyclical (Θ > 0) and monetary policy is described by the inertial
rule (e.8) satisfying ϕπ > φ(Θ). Then the equilibrium is always globally indeterminate, regardless of the
magnitude of α ∈ [0, ∞). The global dynamics under the inertial rule (e.8) can be divided into three regions
based on the magnitude of α ≥ 0:

1. Mildly backward-looking
(

α > α⋆(Θ)
)

: For large α, the targeted equilibrium is both locally and
globally indeterminate. Not only do trajectories which originate in the neighborhood of the targeted steady
state converge to it, there also exists a saddle connection along which trajectories which originate near the
untargeted steady state converge to the targeted steady state.

2. Moderately backward-looking
(

α ∈ [α(Θ), α⋆(Θ)]
)

: ∃α(Θ) < α⋆(Θ) such that for any α ∈
(α(Θ), α⋆(Θ)), any trajectory which originates near the targeted steady state initially diverges but then
converges to a stable cycle which surrounds the targeted steady state. The amplitude of these cycles is a
decreasing function of α in this region. Overall, for α ∈ (α(Θ), α⋆(Θ)), the targeted equilibrium is locally
determinate but there is global indeterminacy. At the lower boundary α = α(Θ), the stable cycles are
absorbed into a homoclinic orbit, and at the upper boundary α = α⋆(Θ), the limit cycles are degenerate,
but there is still global indeterminacy since the higher-order terms push any trajectory starting near the
targeted steady state back towards it.

3. Strongly backward-looking
(

α < α(Θ)
)

: For small enough α, there are no stable cycles. However,
there exists a saddle connection along which the economy can transition from the neighborhood of the
targeted steady state to the untargeted steady state. Thus, a small α ensures local determinacy but not
global determinacy.

Overall, if risk is countercyclical, there is global indeterminacy, no matter how backward-looking the policy rule.

Proof. For a given Θ > 0, the Jacobian of the system (e.9), (e.10), (e.11), evaluated at the targeted steady
state, can be written as:

A =

−σγΘ −1 ϕπ

−κ ρ 0
0 α −α


The trace of A can be written as:

tr(A) = −σγΘ + ρ − α = −σγ(Θ − Θ⋆)− α,

where we have used the definition Θ⋆ = ρ
σγ . Next, the determinant of A is given by:

det(A) = −ακ
(

ϕπ − φ(Θ)
)

,
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Since we maintain that ϕπ > φ(Θ), we know that det(A) < 0 for any α ∈ (0, ∞). We need to show
that ∃α for which the two complex roots have zero real parts. To prove this, we use Orlando’s formula,
which can be written as:35

H = −det(A) + tr(A)× G(A),

where G(A) denotes the pairwise product of the eigenvalues of the matrix A and is given by:36

G(A) =

∣∣∣∣∣−σγΘ −1
−κ ρ

∣∣∣∣∣+
∣∣∣∣∣−σγΘ ϕπ

0 −α

∣∣∣∣∣+
∣∣∣∣∣ρ 0
α −α

∣∣∣∣∣ = ασγ (Θ − Θ⋆)− κφ(Θ)

Using these expressions, we can write H as:

H = ακ
(

ϕπ − φ(Θ)
)
+ [σγ (Θ − Θ⋆) + α] [κφ(Θ)− ασγ (Θ − Θ⋆)] ,

which can be further simplified to
H = κ × α

(
ϕπ − ψ(α)

)
,

where ψ(α) is defined in (e.12). Notice that H = 0 describes values of α (if one exists) for which
two of the eigenvalues cancel each other out. H = 0 requires that either (i) two of the eigenvalues
are purely imaginary or (ii) two real eigenvalues have the same magnitude but opposite sign. Since
Proposition 9 showed that for Θ > Θ⋆, as long as α < α⋆(Θ), there are two complex roots with positive
real parts and one real negative root. Thus, it follows that at α = α⋆(Θ), the two complex roots are
purely imaginary and thus cancel each other out, leaving the trace to equal the remaining negative
root. Thus, a Hopf bifurcation occurs at α = α⋆(Θ). While verifying that the first Lyapunov coefficient
of this 3 dimensional system is possible, it is extremely cumbersome and we verify numerically that
it is negative, implying that the Hopf bifurcation is supercritical. Consequently, the Hopf bifurcation
theorem implies that for any Θ > 0, ∃α(Θ) < α⋆(Θ), such that for α ∈ (α(Θ), α⋆(Θ)], all trajectories
(except those which begin on the one dimensional stable manifold around the targeted steady state),
which originate near the targeted steady state converge to a stable cycle. In this region, since α < α⋆(Θ),
Proposition 9 implies that the targeted steady state is locally determinate. However, since for a given πb

0

in the neighborhood of the targeted steady state, there exists multiple (x0, π0) such that the trajectories
{xt, πt, πb

t }∞
t=0 remain bounded forever, there is global indeterminacy. The convergence to a stable cycle

is depicted graphically in Figure 8a, where we have set Θ = 28.1 and α = 9. Since Θ = 28.1 < Θ⋆ = 31.1
under our calibration, α⋆(28.1) = ∞ and α(28.1) ≈ 1.03 under our calibration. Thus, for any α > 1.03,
any trajectory originating near the targeted steady state converges to a stable cycle.

Next, Theorem 7.2 and Corollary 7.1 of Kopell and Howard (1975) (which are generalizations of
Theorem 2 to n > 2 dimensions) imply that for ϕπ close to φ(Θ), there exists a homoclinic orbit at
the boundary of the stable cycles mentioned above. Thus, for α = α(Θ), there exists a homoclinic
orbit which cycles around the targeted steady state, while passing through the untargeted steady state.
The homoclinic orbit is depicted graphically in Figure 8b. Even in this case, since α(Θ) < α⋆(Θ),
Proposition 9 shows that the targeted equilibrium is locally determinate. However, there is still global

35See pp. 196-198 in Chapter XV of Gantmacher (1960).
36Let z1, z2 and z3 denote the three eigenvalues of the matrix A. Then tr(A) = z1 + z2 + z3, det(A) = z1z2z3 and G(A) =

z1z2 + z2z3 + z3z1.
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indeterminacy, since for any πb
0 in the neighborhood of the targeted steady state, all combinations of

(x0, π0) in the neighborhood of the targeted steady state are such that the trajectories {xt, πt, πb
t }∞

t=0

remain bounded forever. There is a unique one dimensional manifold around the targeted steady
state along which the trajectories converge to the targeted steady state and remain bounded, while
all trajectories originating off this stable manifold converge to the homoclinic orbit. At the bifurcation
point, α = α⋆(Θ), for a given πb

0 in the neighborhood of the targeted steady state, while the first-
order terms do not move the system towards or away from the targeted steady state, the higher-order
terms ensure that all trajectories {xt, πt, πb

t }∞
t=0 converge to the targeted steady state, and hence remain

bounded, implying global indeterminacy in this case as well.
Finally, for α < α(Θ), there are no stable cycles and Proposition 9 implies that the targeted steady

state is locally determinate. However, Theorem 7.2 and Corollary 7.1 of Kopell and Howard (1975) also
guarantee that for α ∈ (0, α⋆(Θ)), there exists a saddle connection along which the economy can tran-
sition from the neighborhood of the targeted steady state to the untargeted steady state. Furthermore,
any trajectory starting on this saddle connection constitutes a bounded equilibrium since it converges
to the untargeted steady state and remains bounded forever. Thus, even in the range α ∈ [0, α(Θ)), the
equilibrium is globally indeterminate.

Proposition 11 characterizes the global dynamics of the economy under the average inflation tar-
geting rule for all degrees of backward-lookingness, and shows that no matter how backward looking
a policy rule, it cannot eliminate global indeterminacy. Figure 8 plots global dynamics for Θ < Θ⋆.

(a) moderately backward-looking (b) homoclinic orbit (α = α)

Figure 8: Global dynamics with an inertial rule

When Θ = 28.1 < Θ⋆, α⋆(Θ) = ∞ and set α ≥ α⋆(Θ) is empty. Thus, the global dynamics in this case
are described by points 2 and 3 of Proposition 11. Figure 8a depicts the dynamics for a moderately
backward-looking rule, where we have set α = 9, which is larger than α(Θ) = 1.03 and smaller than
α⋆(Θ) = ∞. The figure shows that trajectories which originate near the targeted steady state (orange
curves) or even further away from the steady state (grey trajectory), both converge to a stable cycle
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(black trajectory). Figure 8b depicts the homoclinic orbit which occurs if α = α(Θ) = 1.03.37

Trajectories which originate inside the homoclinic orbit converge to it and remain bounded. While
point 3 of Proposition 11 guarantees that for α ∈ [0, α), there exists a saddle connection (along which
the economy can move from the neighborhood of the targeted steady state to the untargeted steady
state), it is hard to numerically plot this trajectory because it is hard to numerically compute the 1
dimensional stable manifold. Hence we are unable to plot the dynamics described in point 3. Overall,
the discussion above shows that as long as risk is countercyclical (Θ > 0), there is global indeterminacy,
no matter how backward looking the policy rule is.

E.3 Analysis with a Rotemberg Phillips curve

E.3.1 Deriving the micro-founded Rotemberg Phillips curve

As in Rotemberg (1982), we assume that there each firm k faces a quadratic cost of changing its price

at each date, which in our continuous time setting an be written as ψ
2

(
Ṗk,t
Pk,t

)2
Ptyt, where ψ is a constant

which scales the cost. We still maintain the assumption that the production function is linear and
that the only factor of production is labor. Then, at any date t, firm k’s nominal profit net of the
price-adjustment cost can be written as:

Dk,t =

Pj,t

(
Pj,t

Pt

)−ε

−
(

1 − ε−1
)

Ptwt

(
Pj,t

Pt

)−ε

− ψ

2

(
Ṗj,t

Pj,t

)2

Pt

 yt,

where (1 − ε−1)wt denotes the post-subsidy real wage, where the subsidy is designed to eliminate the
monopolistic markup on average. The pricing problem of a firm can be expressed as a Hamiltonian:

H =

Pj,t

(
Pj,t

Pt

)−ε

−
(

1 − ε−1
)

Ptwt

(
Pj,t

Pt

)−ε

− ψ

2

(
Ṗj,t

Pj,t

)2

Pt

 yt + ηtṖj,t,

where ηt denotes the co-state variable. The optimal choice of Ṗj,t satisfies

ηt = ψ

(
Ṗj,t

Pj,t

)(
Pt

Pj,t

)
yt, (e.13)

while the evolution of the co-state under the optimal plan can be written as:

η̇t = itηt −

(1 − ε)

(
Pj,t

Pt

)−ε

+ ε
(

1 − ε−1
)( Pt

Pj,t

)
wt

(
Pj,t

Pt

)−ε

+ ψ

(
Ṗj,t

Pj,t

)2 (
Pt

Pj,t

) (e.14)

37The existence of homoclinic orbits in 3 dimensional systems can also give rise chaotic dynamics, as studied by Shilnikov
(See Chapter 6 of Kuznetsov (1998)). Barnett et al. (2022) study an application of Shilnikov chaos to a New Keynesian model.
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In a symmetric equilibrium, all firms choose the same Pj,t = Pt and we can rewrite (e.13) and (e.14) as:

ηt = ψπtyt (e.15)

η̇t = itηt −
[
(1 − ε) + ε

(
1 − ε−1

)
wt + ψπ2

t

]
yt, (e.16)

where πt = Ṗt/Pt. Next, taking the time derivative of (e.15), we have:

η̇t = ψπ̇tyt + ψπtẏt (e.17)

Combining (e.16) and (e.17), we get the Phillips curve:

π̇t =

(
rt −

ẏt

yt

)
πt − κ (wt − 1) , (e.18)

where κ = ε−1
ψ .

E.3.2 Global indeterminacy with the Rotemberg Phillips curve

As in our baseline, we consider the inflation targeting rule:

it = r + ϕππt

Then, the dynamics of (xt, πt) can be written as:

ẋt = (ϕπ − 1)πt + σ
(

e−γΘxt − 1
)

(e.19)

π̇t = (rt − γẋt)πt − κ (ext − 1) (e.20)

As before, we can rewrite this system by separating the first-order and higher-order terms:[
ẋt

π̇t

]
=

[
−γσΘ ϕπ − 1
−κ r

]
︸ ︷︷ ︸

A

[
xt

πt

]
+

[
σ
(
e−γΘxt − 1 + γΘxt

)
−κ (ext − 1 − xt)− (γ − 1) (ϕπ − 1)π2

t − γσ
(
e−γΘxt − 1

)
πt

]
,(e.21)

where r = ρ − σ denotes the real interest rate in the targeted steady state. In what follows, we assume
that r > 0.38 As in Appendix B, local determinacy in this economy requires that the matrix A have two
eigenvalues with positive real parts.

Stable cycle via a Hopf bifurcation Similar to Appendix B, it is clear that the trace of A is 0 at
Θ = Θ⋆

R ≡ r
σγ . Imposing Θ = Θ⋆

R in A, we have:

A⋆
R =

[
−r ϕπ − 1
−κ r

]
,

38We make this assumption since with r < 0, the Phillips curve slopes the wrong way and becomes downward sloping.
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and the eigenvalues of A⋆
R are given by ±ωi where ω =

√
κ (ϕπ − 1)− r2 and i =

√
−1. Thus, the

system undergoes a Hopf-bifurcation at Θ = Θ⋆
R.

Next, we can diagonalize the matrix A⋆
R as:

A⋆
R = PDP−1,

where

D =

[
0 −ω

ω 0

]
and P =

[
r ω

κ 0

]
, P−1 =

[
0 1

κ
1
ω − r

ωκ

]
Pre-multiplying both sides of (e.21) by P−1, we get:[

u̇t

v̇t

]
= D

[
ut

vt

]
+

[
f (u, v)
g (u, v)

]
,

where
f (u, v) = −erut+ωvt + 1 + rut + ωvt − σ

(
e−

r
σ (rut+ωvt) − 1

)
vt

g (u, v) =
σ

ω

(
e−

r2
σ ut− rω

σ vt − 1
)
(1 + rvt) +

r
ω

(
erut+ωvt − 1

)
[

ut

vt

]
= P−1

[
xt

πt

]
and

[
xt

πt

]
=

[
rut + ωvt

κvt

]
Finally, the first Lyapunov coefficient at the bifurcation point Θ = Θ⋆

R is given by:

ℓ1(0) = fuuu (0, 0) + fuvv (0, 0) + guuv (0, 0) + gvvv (0, 0)

+
1
ω

[
fuv (0, 0) ( fuu (0, 0) + fvv (0, 0))− guv (0, 0) (guu (0, 0) + gvv (0, 0))− fuu (0, 0) guu (0, 0)

+ fvv (0, 0) gvv (0, 0)
]

The Lyapunov coefficient is difficult to sign analytically, but is negative under our baseline calibration:
ℓ1(0) = −0.0589. Thus, even with the Rotemberg Phillips curve, the Hopf bifurcation is supercritical, i.e.
the higher-order terms of the system (e.21), push x, π in towards the equilibrium (0, 0). Overall, this
shows that there exists an interval (Θ⋄

R, Θ⋆
R) for which any trajectories originating in the neighborhood

of (x, π) = (0, 0) initially diverge away from the targeted steady state but then converge to a stable cycle
staying bounded forever, implying that there is global indeterminacy. The Hopf bifurcation theorem
also ensures that for Θ > Θ⋆

R, as in the baseline, there are multiple bounded trajectories and hence
there is global indeterminacy. Thus, the only effect of the change in the form of the Phillips curve is to
redefine the boundaries of the mild, moderate and highly countercyclical risk regions.

Multiple Steady States Furthermore, it is easy to see the second steady state continues to exists
even with the Rotemberg Phillips curve for all Θ > 0, which is an additional source of indeterminacy.
Imposing ẋ = π̇ in (e.19) and (e.20), and combining them implies that steady state x is implicitly
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defined by the equation:

F(x) =
κ (ϕπ − 1)

r
(ex − 1) + σ

(
e−γΘx − 1

)
,

which is the same as (b.1) in our baseline model. By the same arguments as in Appendix B.3, this
equation also has two zeros, one at x = 0 and one at x < 0 (provided that the (0, 0) equilibrium is
locally determinate).

Saddle connection from the targeted to the untargeted steady state Finally, to establish the existence
of a saddle connection when risk is mildly countercyclical Θ ∈ (0, Θ⋄

R), we use Theorem 2. For Theorem
2, we need to consider the case when the matrix A in (e.21) has two zero eigenvalues. As in our baseline,
it is easy to see that this happens when Θ = Θ⋆

R and ϕπ = 1 + r2

κ , in which case, we can write A in
(e.21) as

A⋄
R =

[
−r r2/κ

−κ r

]
,

which ensure that both the trace and determinant are 0. Consequently, A⋄
R has eigenvector e =

[
r
κ

]
, and

generalized eigenvector

[
−1
0

]
Next, for condition 2 of Theorem 2 to be satisfied, we need the Jacobian

of [Tr(A), Det(A)] with respect to [Θ, ϕπ] to be non-zero, which is clearly true since the Jacobian can
be written as: [

−σ −rσ
0 κ

]
Finally, for condition 3, we need to construct Q (e, e). At the double-zero, the system can be written as:[

ẋt

π̇t

]
=

[
−r r2

κ

−κ r

] [
xt

πt

]
+

[
−r2

2σ x2
t

− κ
2 x2

t − (γ − 1) r2

κ π2
t + γrxtπt

]
+ R2

where R2 denotes terms with order higher than 2. So, Q(e, e) can be written as:

Q(e, e) =

[
−r4

2σ
r2κ
2

]

Next, we need to check that the following matrix has rank 2:

rank

[
−r r2

κ − r4

2σ

−κ r r2κ
2

]
,

which clearly has rank 2, since the second and third columns are not linearly dependent. Thus, The-
orem 2 applies to the economy with the Rotemberg Phillips curve as well. Thus, since the Hopf
bifurcation theorem established the existence of a stable cycle only for Θ ∈ (Θ⋄

R, Θ⋆
R), then Theorem 2

implies that for 0 < Θ < Θ⋄
R, we have a saddle connection, implying that there is also indeterminacy

for mildly countercyclical risk. Thus, incorporating a Rotemberg Phillips curve does not affect our
main results.

74



E.4 Robustness to functional forms

In our baseline model, we assumed a particular functional-form for how the transition rate of switching
from ξh to ξl depends on yt. In particular, we assumed the functional form:

λl,t = λly−Θ
t = λle−γΘxt , Θ > 0,

where xt = γ−1 ln yt. In this Appendix, we show that our characterization of global indeterminacy
does not depend λl,t having this exact functional form. To do so, we allow for the transition rate λl,t to
be described by:

λl,t = λl · Λ (ln yt) = λl · Λ (γxt) , (e.22)

where Λ(·) is some analytic function which takes non-negative values Λ (γx) ≥ 0 for any x ∈ (−∞, ∞).
In addition, we normalize Λ(0) = 1 so that the transition rate in the targeted steady state with x = 0
is still given by λl as in the baseline model. Finally, to make the analysis comparable to the baseline
model, we assume that

Λ′(0) = −Θ < 0, (e.23)

which ensures that risk is countercyclical, with the parameter Θ controlling how countercyclical risk is
as in the baseline model. However, it is important to note that (e.23) only makes an assumption about
how the transition rate changes local to the targeted steady state and does not restrict the behavior of
how the transition rate responds to changes in x away from x = 0.

Keeping everything else the same as in our baseline model except the transition rate, which is now
given by (e.22), the IS curve and the Phillips curve can be written as:

ẋt = it − πt − ρ + σΛ (γxt) (e.24)

π̇t = ρπt − κ (ext − 1) , (e.25)

where, as in the baseline model, σ = λl

(
ξh
ξl
− 1
)
> 0 still captures the average consumption risk faced

by ξh households in the targeted steady state. Finally, assuming that monetary policy is still described
by the policy rule it = ρ − σ+ ϕππt (which is the same as (6)), the aggregate dynamics of xt, πt are
fully characterized by the following system of ODEs:

ẋt = (ϕπ − 1)πt + σ
(

Λ (γxt)− 1
)

(e.26)

π̇t = ρπt − κ (ext − 1) (e.27)

As in the main text, we can rewrite the system of ODEs as:

[
ẋt

π̇t

]
= A

[
xt

πt

]
+

σ{Λ (γxt)− 1 + γΘxt

}
−κ (ext − 1 − xt)


︸ ︷︷ ︸

higher-order terms

, (e.28)
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where, as in the baseline model, the properties of matrix A dominate the dynamics local to the targeted
steady state (x, π) = (0, 0), and the higher-order terms dominate the dynamics. With a general Λ(·)
function, the matrix A can be written as:

A =

[
σγΛ′ (0) ϕπ − 1

−κ ρ

]
=

[
−σγΘ ϕπ − 1
−κ ρ

]
,

where the second equality uses (e.23), i.e., local to the steady state, the derivative of Λ(·) with respect
to x is given by −Θ. Consequently, the A matrix above is the same as in equation (17) in our baseline
model, implying that the first-order dynamics of the two economies are identical local to the targeted
steady state.

Local Determinacy Since the first-order dynamics of our baseline economy and the economy with
a general Λ(·) function are identical local to the targeted steady state, it follows that the conditions
which guarantee local determinacy of the targeted equilibrium in this economy with the general Λ(·)
function are the same as in our baseline economy and summarized by Proposition 2, which states that
as long as, local to the targeted steady state, risk is not too countercyclical: 0 < Θ < ρ

σγ , local determinacy
requires that ϕπ > φ(Θ), where φ(Θ) is the same as in (18). Furthermore, as in the baseline model,
if local to the targeted steady state, risk is too countercyclical Θ > ρ

σγ , the targeted equilibrium is locally
indeterminate no matter how large ϕπ, as long as it is finite. Throughout the rest of Appendix E.4, we
will maintain the assumption that ϕπ > φ(Θ), which is a necessary condition for local determinacy of
the targeted equilibrium.

E.4.1 Global Indeterminacy: Existence of a stable cycle

In this section, we show that the existence of the stable cycle only depends on the properties of Λ(·)
local to x = 0. As in our baseline model (see Appendix ), it is easy to see that Θ = Θ⋆ = ρ

σγ is still the
bifurcation point of this general system. To see this, we can evaluate (e.28) at Θ = Θ⋆ = ρ/(σγ) to get:[

ẋt

π̇t

]
=

[
−ρ ϕπ − 1
−κ ρ

]
︸ ︷︷ ︸

A⋆

[
xt

πt

]
+

[
σ
{

Λ (γxt)− 1 + ρ
σ xt
}

−κ (ext − 1 − x)

]
, (e.29)

Clearly, as in Appendix B.5 which studies our baseline model, the matrix A⋆ in (e.29) has trace 0,
which means that the two eigenvalues of the matrix add up to 0. Furthermore, as long as we impose
ϕπ > φ(Θ), the condition required for local determinacy of the targeted steady state, the determinant
of A⋆ is positive:

Det(A⋆) = κ(ϕπ − 1)− ρ2 > 0 ∵ ϕπ > φ(Θ⋆) = 1 +
ρ2

κ

A positive determinant means that the eigenvalues must be purely imaginary, because if the roots were
real and canceled each other out, then the determinant would be negative. Thus, as in our baseline
model, the economy undergoes a Hopf bifurcation at Θ = Θ⋆ (see Theorem 1). In fact, at Θ = Θ⋆, the
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two eigenvalues can be written as ±ωi, where ω =
√

κ(ϕπ − 1)− ρ2. Next, as in Appendix B.5, we
can diagonalize A⋆ as A⋆ = PDP−1, where

D =

[
0 −ω

ω 0

]
and P =

[
ρ ω

κ 0

]

Next, we can pre-multiply both sides of (e.29) by P−1 to express the system in normal form:[
u̇
v̇

]
= D

[
u
v

]
+

[
f (u, v)
g (u, v)

]
,

where[
u
v

]
=

[
π
κ

x
ω − ρ

ωκ

]
⇔
[

x
π

]
=

[
ρu + ωv

κu

]
and

[
f (u, v)
g (u, v)

]
=

 −eρu+ωv + 1 + ρu + ωv
ρeρu+ωv+σΛ

(
γρu+γωv

)
−(ρ+σ)

ω


We can use the normal form to compute the first-Lyapunov coefficient, which can be written as:

ℓ1 (0) = fuuu (0, 0) + fuvv (0, 0) + guuv (0, 0) + gvvv (0, 0)

+
1
ω

[
fuv (0, 0) ( fuu (0, 0) + fvv (0, 0))− guv (0, 0) (guu (0, 0) + gvv (0, 0))− fuu (0, 0) guu (0, 0)

+ fvv (0, 0) gvv (0, 0)
]

= −σγ2κ (ϕπ − 1)
ω2

[
κ (ϕπ − 1)Λ′′

0 + ρσγ2 (Λ′′
0
)2 − γω2Λ′′′

0

]
,

where

Λ′′
0 =

d2Λ(x)
dx2

∣∣∣∣
x=0

and Λ′′′
0 =

d3Λ(x)
dx3

∣∣∣∣
x=0

are the second and third derivatives of the function Λ(x) evaluated at x = 0. Finally, as in Appendix
B.5, the Hopf bifurcation is supercritical as long as ℓ1(0) < 0, which requires that

κ (ϕπ − 1)Λ′′
0 + ρσγ2 (Λ′′

0
)2

> γω2Λ′′′
0 (e.30)

As long as (e.30) is satisfied, our HANK economy with a general Λ(x) function would also feature
global indeterminacy, even when the targeted equilibrium is locally determinate. This is because, if
(e.30) is satisfied, Theorem 1 guarantees that, as in our baseline model, there exists a Θ < Θ⋆ such that
for any Θ ∈ (Θ, Θ⋆), any trajectory (xt, πt) originating in the neighborhood of the targeted steady state
(x, π) = (0, 0) initially diverges away form (0, 0), but coverage to a stable cycle and remain bounded
asymptotically, thus implying that multiple bounded trajectories satisfy all equilibrium conditions no
matter how large ϕπ > φ(Θ) > 1 is.

Furthermore, the restriction in (e.30) is not very demanding and is satisfied as long as Λ(·) is
sufficiently convex local to x = 0. This is easiest to see if we assume that Λ′′′

0 < 0, in which case (e.30)
can be simplified to

κ (ϕπ − 1)Λ′′
0 + ρσγ2 (Λ′′

0
)2

> 0,
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A sufficient condition for which the above condition is satisfied is that Λ′′
0 > 0, i.e., Λ(γx) is a decreas-

ing and convex function local to x = 0. Note that the condition (e.30) is satisfied in our baseline speci-
fication with Λ(x) = e−γΘx since it is a decreasing concave function: Λ′′

0 = Θ2 > 0 and Λ′′′
0 = −Θ3 < 0

as long as Θ > 0. Importantly, (e.30) only needs to be satisfied at x = 0, and does not require the func-
tion Λ(x) to be concave over the entire domain. In other words, the existence of the stable cycle can
be established without restricting the shape of Λ(γx) for x far away from its value in the steady state
(other than the assumptions about continuity and differentiability); condition (e.30) only depends on
how countercyclical risk is in the neighborhood of the targeted steady state (x = π = 0). A corollary of
this is that the existence of the stable cycle does not require the existence of an untargeted steady state.
It is also useful to note that even the restriction Λ′′

0 > 0 is only a sufficient condition, (e.30) may even
be satisfied in Λ(·) is concave, but not too concave.

Finally, it is worth pointing out that (e.30) is not satisfied if Λ(·) is linear in x since that implies
that Λ′′

0 = Λ′′′
0 = 0. However, the argument above makes clear that the case with Λ(x) linear is non-

generic and constitutes a rather restrictive assumption on the shape of Λ(x). (e.30) is satisfied away
from this knife-edge case under fairly nonrestrictive assumptions. In fact, in the main text, we argue
that it is natural for Λ(x) to be a decreasing convex function. Together, these arguments imply that
global indeterminacy can easily arise in HANK economies with countercyclical risk as long as standard
monetary policy rules are utilized.

However, even if we insist that Λ(·) be a linear function in x, then while the stable cycle cannot
exist, global indeterminacy can easily arise under some mild conditions which ensure the existence of
at least one untargeted steady state alongside the targeted steady state. We describe this scenario next.

E.4.2 Global Indeterminacy: Existence of multiple steady states

In this section, we provide some sufficient conditions on the properties of Λ(γx) under which at least
one untargeted steady state exists alongside the targeted steady state. As discussed earlier, since our
baseline feature no predetermined variables, the existence of two steady states already implies global
indeterminacy even if a stable cycle does not exist. To characterize sufficient conditions under which
the economy with a general Λ(·) function admits multiple steady states, impose ẋ = π̇ = 0 in (e.26)
and (e.27) to get:

0 = (ϕπ − 1)π + σ
(

Λ (γx)− 1
)

0 = ρπ − κ (ex − 1)

Any combination of (x, π) which satisfy the two equations above constitute a steady state of the econ-
omy. As in Appendix B.3, we can combine these two equations into one equation, and any x which
solves the following equation is steady state of the economy.

F (x) =
κ (ϕπ − 1)

ρ
(ex − 1) + σ (Λ (γx)− 1) = 0

Without further restrictions on the slope of Λ(·), it is not possible to ascertain the sign and magnitude
of F(x) for any x. However, since we assumed that Λ(0) = 1, we know that x = 0 satisfies F(0) = 0.
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Thus, (x, π) = (0, 0) is still a steady state of the economy. Furthermore, given the assumption (e.23)
that Λ′(0) = −Θ < 0, i.e., risk is countercyclical local to x = 0, we can write the derivative of F(x) at
x = 0 as:

F′(x)
∣∣

x=0 =
κ (ϕπ − 1)

ρ
+ γσΛ′(0) =

κ

ρ

(
ϕπ − 1 − ργσΘ

κ

)
=

κ

ρ
[ϕπ − φ(Θ)] ,

where the second equality uses (e.23). Given our maintained assumption that ϕπ > φ(Θ), we have
F′(0) > 0, which implies that as we lower x from 0, F(x) declines below 0. This condition is sufficient
to ensure that a untargeted steady state exists even when Λ(γx) is linear. To see this, given our
assumption that Λ′(0) = −Θ, when Λ(γx) is linear, it can be written as:

Λ(γx) = max{0, 1 − γΘx},

where the max operator ensures that the function only takes non-negative values even when x is
positive and large. In this case, for x < 0, we can rewrite F(x) above as:

F(x) =
κ (ϕπ − 1)

ρ
(ex − 1)− σΘγx

It is true by inspection that as x → −∞, we have F(x) → +∞. Since we know that F(0) = 0 and
F′(0) > 0, it must be that for as we lower x starting from 0, F(x) becomes negative. Since F(x) tends
to +∞ as x → −∞, it must be the case that there exists x < 0 for which F(x) = 0. Thus, even when
Λ(·) is linear, the untargeted steady state exists for any Θ > 0, i.e., as long as risk is countercyclical.
It follows immediately that even when Λ(γx) is non-linear, a sufficient condition for the existence of
the untargeted steady state is that Λ(ln y) is convex. Furthermore, under this condition, the existence
of this steady state can be guaranteed without making further assumptions about the behavior of
Λ(γx) away from x = 0: convexity of Λ() is sufficient to ensure the existence of an untargeted steady
state with lower economic activity as long as risk is countercyclical local to the targeted steady state
Λ′(0) = −Θ < 0. Of course, the exact value of output in the untargeted steady state depends on the
exact functional form of Λ(), but we can guarantee existence of such a steady state based purely on
the properties of Λ() local to the targeted steady state.

Thus, our characterization of global determinacy holds under fairly weak restrictions on the shape
of the function Λ(). Furthermore, establishing this only depends on the properties of Λ() local to the
targeted steady state x = 0, and does not require us to take a stance on how cyclical risk behaves as
the economy moves far from the steady state.

E.5 Non-constant fraction of HtM households

In our baseline model we assumed that λh,t adjusts endogenously to ensure that λh,tη = λl,t(1 − η).
This meant that the fraction of ξh and ξl households stays constant over time. This assumption was
made for simplicity. In this appendix, we relax this assumption and allow the fraction of ξl households
(ηt) to change over time. In particular, if we assume that ξl households transition to ξh at a constant
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rate λh > 0, we can express the law of motion of the mass of ξl households as:

η̇t = λl,t (1 − ηt)− λhηt, (e.31)

where we maintain the assumption that λl,t = λly−Θ
t . Under this specification, more households

transition to ξl state and become borrowing constrained when the economy is in a downturn, i.e.,
when output is below is steady state level.

Despite this change, the rest of our model remains largely unchanged relative to the baseline. Even
though ηt cannot change over time, at any date t, the consumption of a ξh household and ξl household
can be written as:

ch,t =

(
ξh

ψ

)γ

wγ
t and cl,t =

(
ξl

ψ

)γ

wγ
t ,

respectively. As in the baseline model, we normalize ψ to ensure that output and wages in the targeted
steady state equal 1. This now requires:

ψ =
[
(1 − η) ξ

γ
h + ηξ

γ
l

] 1
γ ,

where η = λl
λl+λh

denotes the fraction of ξl households in the targeted steady state.
However, since ηt can change over time, the goods market clearing condition is now given by:

(1 − ηt) ch,t + ηcl,t = yt ⇒
(1 − ηt) ξ

γ
h

(1 − η) ξ
γ
h + ηξ

γ
l

wγ
t +

ηtξ
γ
l

(1 − η) ξ
γ
h + ηξ

γ
l

wγ
t = yt (e.32)

We can rewrite the above equation to derive a relationship between aggregate output and wages:

yt = µtw
γ
t where µt =

(1 − ηt) ξ
γ
h + ηtξ

γ
l

(1 − η) ξ
γ
h + ηξ

γ
l

(e.33)

Equation (e.33) confirms that in the targeted steady state with ηt = η, the relationship between wages
and output is the same as in our baseline model. However, away from the targeted steady state ηt ̸= η,
µt mediates the relationship between wages and output, and captures the fact that ξh and ξl households
work different number of (effective) hours. In fact, there is a one-to-one relationship between µt and
ηt, which can be written as:

µt = 1 − Γ(∆c) ·
(

ηt − η

1 − η

)
where Γ(∆c) =

(1 − η)(∆c − 1)
1 + (1 − η) (∆c − 1)

∈ (0, 1), (e.34)

and ∆c = ch
cl

=
(

ξh
ξl

)γ
> 1 denotes the relative consumption of ξh and ξl households in the targeted

steady state.

IS equation Next, we can derive the IS equation by taking the time-derivative of (e.33) (which de-
scribes ch,t):

ch,t =
ξ

γ
h

(1 − η) ξ
γ
h + ηξ

γ
l

(
yt

µt

)
⇒ ẏt

yt
=

ċh,t

ch,t
+

µ̇t

µt
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Then using the Euler equation of ξh households (which remains the same as in the baseline and is
given by (9)), we can derive the following IS equation:

ẏt

yt
= γ

(
it − πt − r⋆t

)
, (e.35)

where the natural rate is now given by:

r⋆t = ρ − σy−Θ
t − 1

γ

µ̇t

µt
(e.36)

Equation (e.36) shows that, as in our baseline model, r⋆t can still endogenously fluctuate in response
to contemporaneous output fluctuations. However, now r⋆ also responds negatively to increases in the
fraction of hand-to-mouth households. This is because a higher fraction of HtM households lowers the
desired level of aggregate savings and hence implies a lower real interest rate to clear asset markets
and stabilize demand at that particular level of output.

Using the interest rate rule (6) it = ρ − σ + ϕππt, we can substitute out the nominal interest rate
and write the IS equation (e.35) as:

1
γ

ẏt

yt
= (ϕπ − 1)πt + σ

(
y−Θ

t − 1
)
+

1
γ

µ̇t

µt
, (e.37)

Phillips curve We use the same specification of the Phillips curve as in our baseline (given by (5)):

π̇t = ρπt − κ(wt − 1)

We can write this in terms of output, rather than wages using (e.33) as:

π̇t = ρπt − κ

[(
yt

µt

) 1
γ

− 1

]
(e.38)

Evolution of µt Next, differentiating µt in (e.33) with respect to time and using the definition of η̇t in
(e.31), we can derive the law of motion of µ̇t:

µ̇t

µt
= −λl

[
Γ

(
y−Θ

t − 1
µt

)
−
(

y−Θ
t − 1

) (
1 − µ−1

t

)
− 1

η

(
1 − µ−1

t

)]
. (e.39)

Overall, the three ordinary differential equations (e.37), (e.38) and (e.39) jointly describe the ag-
gregate dynamics of yt, πt and µt. However, rather than working in terms of yt and µt, it is more
convenient to express the dynamics in terms of transformed variables xt = 1

γ ln yt and mt = 1
γ ln µt.

As in our baseline, xt can be interpreted as a scaled version the output-gap and measures the (scaled)
percentage deviation of output from its value in the targeted steady state. Similarly, µ = 1 in the
targeted steady state, and thus mt can be interpreted as the (scaled) percentage deviation of µt from its
value in the targeted steady state. Following the change of variables, we can rewrite (e.37), (e.38) and
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(e.39) as:

ẋt = (ϕπ − 1)πt + σ
(

e−γΘxt − 1
)
+ ṁt (e.40)

π̇t = ρπt − κ
(
ext−mt − 1

)
(e.41)

ṁt = −γ−1λl

{(
e−γΘxt − 1

) [
Γ + (1 − Γ)

(
1 − e−γmt

)]
+

1
η

(
1 − e−γmt

)}
(e.42)

As in the baseline, it is useful to separate the terms which dominate aggregate dynamics local to
the targeted steady state x = π = m = 0 and the non-linear terms which dominate dynamics further
away from this steady state: ẋt

π̇t

ṁt

 = A

 xt

πt

mt


︸ ︷︷ ︸
first-order

terms

+


σ
(
e−γΘxt − 1 + γΘxt

)
− γ−1λl(1 − Γ)

(
e−γΘxt − 1

)
(1 − e−γmt) + γ−1λl

η (e−γmt − 1 + γmt)

−κ [ext−mt − 1 − (xt − mt)]

−γ−1λl

{
Γ
(
e−γΘxt − 1 + γΘxt

)
+ (1 − Γ)

(
e−γΘxt − 1

)
(e−γmt − 1)− 1

η (e−γmt − 1 + γmt)
}


︸ ︷︷ ︸
higher-order terms

(e.43)

where the matrix A is the Jacobian of the system around the targeted steady state (x, π, m) = (0, 0, 0)
and is given by

A =

−γσΘ ϕπ − 1 −λl/η

−κ ρ κ

λlΓΘ 0 −λl/η

 where σ = λl

[
(∆c)

1
γ − 1 − 1

γ
Γ(∆c)

]
(e.44)

As in our baseline, the first-term on the RHS of (e.43) describes the first-order dynamics of the
economy and describes the dynamics of xt, πt, mt local to the targeted steady state (x, π, m) = (0, 0, 0),
while the second term on the RHS denotes the the higher-order terms which dominate the dynamics
of the economy further away from the targeted steady state. Before proceeding, we establish that as
long as ∆c > 1, σ > 0 for any γ > 0.

Lemma 1. For any ∆c > 1, we have σ > 0 for all γ > 0.

Proof. For this proof, it is convenient to define g = γ−1 and rewrite σ in terms of the coefficient of
relative risk aversion g:

σ (g) = λl [(∆c)
g − 1 − gΓ(∆c)]

First notice that for g = 0(γ = ∞), we have:

σ (0) = λl [1 − 1 − 0] = 0
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Next, notice that we can write the derivative of σ (g) with respect to g as:

∂σ (g)
∂g

= λl [(∆c)
g ln ∆c − Γ (∆c)]

Thus, to prove the claim that σ(g) > 0 for all g ≥ 0, because σ (0) = 0, it is sufficient to show that this
derivative is positive for all g ≥ 0. Start with g = 0, in which case the derivative can be written as:

∂σ (0)
∂g

= λl
[
(∆c)

0 ln ∆c − Γ (∆c)
]
= ln(∆c)− Γ(∆c)

Clearly this is positive for ∆c >> 1 since Γ(∆c) is bounded above by 1 while log(∆c) grows unbounded
as ∆c increases. Thus, we need to show that the derivative is positive for ∆c close to 1. To do so,
consider ∆c close to 1, which we can equivalently write as ∆c = 1+ δ for some positive δ close to 0. We
know that for δ small we can write ln(1 + δ) as:

ln(1 + δ) = δ − δ2

2
+

δ3

3
· · ·

In a similar fashion, a power series expansion of Γ(1 + δ) around δ = 0 can be written as:

Γ (1 + δ) =
(1 − η) δ

1 + (1 − η) δ
= (1 − η) δ

[
1 + (1 − η) δ + (1 − η) δ2 + · · ·

]
= (1 − η) δ− (1 − η)2 δ2 +(1 − η)3 δ3,

and so the leading term of ln(1 + δ)− Γ(1 + δ) is given by:

ln (1 + δ)− Φ (1 + δ) = ηδ > 0,

which implies that even for ∆c close to 1, we have ln(∆c)− Γ(∆c) > 0 and so for any ∆c > 1, we have
∂σ(0)

∂g > 0. Then, since (∆c)g > 1 for all g > 0, it must be true for any ∆c > 1 and g > 0 that:

∂σ (g)
∂g

= λl [(∆c)
g ln ∆c − Γ (∆c)] > 0

So, we have σ > 0.

E.5.1 Local and Global determinacy of the targeted equilibrium

Next, we can derive the conditions for local determinacy of the targeted equilibrium. Since we now
have two jump variables xt, πt, and one predetermined variable mt, local determinacy of the targeted
equilibrium requires that the matrix A in (e.44) have two eigenvalues with positive real parts and one
negative real eigenvalue, which implies that a necessary condition for local determinacy is that the
determinant of A must be negative. Before we evaluate the determinant, notice that the trace of A can
be written as:

tr(A) = ρ − λl

η
− γσΘ
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In what follows, we will assume that the fraction of ξl households in the targeted steady state (give by
η is not too large. This is formalized in Assumption 1 below.

Assumption 1. In the targeted steady state with, the fraction of ξl households is not too large:

η <
λl

ρ
(e.45)

Assumption 1 ensures that the trace of A is negative even if risk is acyclical, and ensures that at
least one of the roots of A is always negative.

With assumption 1 in place, the determinant of A can be written as:

det (A) = −κλl

η
(1 − ηΓΘ)

[
ϕπ − φη(Θ)

]
, where φη(Θ) = 1 +

ρσγΘ
κ (1 − ηΓΘ)

The expression above shows that a necessary condition for local determinacy of the target equilibrium
is risk not be too countercyclical and that monetary policy be sufficiently aggressive in response to
changes in inflation:

ϕπ > φη(Θ) and 0 < Θ < (ηΓ)−1 (e.46)

Thus, the condition above is analogous to (18) in the baseline model and shows that if risk is acyclical
Θ = 0, then φη(0) = 1, and the standard Taylor principle ϕπ > 1 suffices for local determinacy.
However, as we increase Θ starting from 0 (which makes risk more countercyclical), the larger ϕπ

must be to ensure local determinacy. This can be seen from the fact that the derivative of φη(Θ) is an
increasing function of Θ.

As in our baseline model (e.46) is only a necessary condition for local determinacy of the target
equilibrium. In fact, as we show next, there exists Θ⋆ ∈ (0, (ηΓ)−1) such that for Θ > Θ⋆, the target
equilibrium is locally indeterminate. In particular, for 0 < Θ < Θ⋆, two of the eigenvalues of A are a pair
of complex conjugates with positive real parts, while the third is a negative real root, which implies
local determinacy (since we have one predetermined variable and two jump variables). At Θ = Θ⋆,
the pair of complex roots pass become purely imaginary (they have 0 real parts), while the third
root stays negative. In other words, the system of ODEs describing aggregate dynamics undergoes
a Hopf bifurcation at Θ = Θ⋆ (we discuss this in detail in the following paragraph). Increasing Θ
above Θ⋆ (but keeping it still below (ηΓ)−1 corresponds to the case in which A now has a negative
determinant via three roots with negative real parts, which implies that the targeted equilibrium is
locally indeterminate as for a given m, a trajectory starting from any (x, π) close enough to (0,0), now
converges to the targeted steady state. Finally, when risk is even more countercyclical, Θ > (ηΓ)−1,
no matter how large ϕπ is relative to φη(Θ), we still have local indeterminacy. This is because for
Θ > (ηΓ)−1, the determinant is positive in this case, no matter how large ϕπ is. A positive determinant
implies that we cannot have two roots with positive real parts and one negative root and as in our
baseline model, even the augmented Taylor principle cannot deliver local determinacy. Thus, the local
determinacy properties are similar to those in our baseline model and are qualitatively unaffected by
the fact that the fraction of ξl households can change over time in this extension.
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Hopf Bifurcation and convergence to a stable cycle As mentioned above, the system of ODEs un-
dergoes a Hopf bifurcation at Θ = Θ⋆. As in our baseline model, this Hopf bifurcation means that
even when the targeted steady state is locally determinate, there is global indeterminacy because there
are multiple bounded trajectories which start off the stable manifold of the targeted steady state, ini-
tially diverge away from the targeted steady state, but then converge to a stable cycle surrounding the
targeted steady state and remain bounded asymptotically. Next, we show that as long as Assumption
1 holds, and if the targeted steady state is locally determinate, i.e., ϕπ > φη(Θ), then there exists a
Θ⋆ ∈

(
0, 1

ηΓ

)
such that evaluating the matrix A in (e.44) at Θ = Θ⋆ ensures that two out of its three

eigenvalues (denotes by z⋆1 , z⋆2 , z⋆3) are purely imaginary and one is real and negative. As a result,
z⋆1 , z⋆2 , z⋆3 satisfy Orlando’s formula, which is given by:

−S
(

A(Θ⋆)
)
+

det
(

A(Θ⋆)
)

tr
(

A(Θ⋆)
) = 0,

where S
(

A(Θ⋆)
)
= z⋆1z⋆2 + z⋆2z⋆3 + z⋆3z⋆1 , det

(
A(Θ⋆)

)
= z⋆1z⋆2z⋆3 and tr

(
A(Θ⋆)

)
= z⋆1 + z⋆2 + z⋆3 . Since the

trace of A is negative, satisfying Orlando’s formula is a sufficient condition for two of the roots to be
purely imaginary with the third root being negative since the trace and determinant are negative. We
prove this claim next.

Lemma 2. Suppose that η ≤ λl/ρ, ϕπ > φη(Θ) and 0 ≤ Θ < (ηΓ)−1. Then, ∃Θ⋆ ∈
(

0, 1
ηΓ

)
, such that

H(Θ⋆) = −S(Θ⋆) +
det(Θ⋆)

tr(Θ⋆)
= 0

Proof. Let’s start by calculating H(Θ) for 0 ≤ Θ < (ηΓ)−1. For convenience, we replicate A(Θ) here:

A(Θ) =

−γσΘ ϕπ − 1 −λl/η

−κ ρ κ

λlΓΘ 0 −λl/η


First, note that following basic linear algebra, we can calculate S(Θ) as the sum of the principal co-
minors of A:

S (Θ) =

∣∣∣∣∣−γσΘ ϕπ − 1
−κ ρ

∣∣∣∣∣+
∣∣∣∣∣ρ κ

0 −λl/η

∣∣∣∣∣+
∣∣∣∣∣−γσΘ −λl/η

λlΓΘ −λl/η

∣∣∣∣∣ ,

which can be simplified to:

S(Θ) = κ (ϕπ − 1)− ρ
λl

η
+ ρ

(
λlΓ − γσ +

λl

ρη
γσ

)
Θ

Next, as before, the simplified determinant of A can be written as:

det (Θ) =
λl

η
[ργσΘ − κ (ϕπ − 1) (1 − ηΓΘ)] ,
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Since we are imposing conditions so that the targeted steady state is locally determinate (ϕπ > φη(Θ)

and 0 ≤ Θ < (ηΓ)−1), we know that the determinant is negative for all Θ in the range we are consid-
ering. Finally, we can express the trace of A as:

tr(Θ) = ρ − λl

η
− γσΘ

Given our assumption that η ≤ λl/ρ, the trace is negative even when risk is acyclical (Θ = 0). Fur-
thermore, the more countercyclical the risk (larger Θ), the more negative is the trace. Using these
expressions, we can write H(Θ) as:

H(Θ) =
N (Θ)

ρ − λl
η − γσΘ

,

where
N (Θ) = a2Θ2 + a1Θ + a0,

with

a2 = ργσ

[
λlΓ +

(
λl

η
− ρ

)
γσ

ρ

]
> 0

a1 = κ (ϕπ − 1) γσ + γσ

(
λl

η
− ρ

)2

+

(
2

λl

η
− ρ

)
ρλlΓ > 0

a0 = −ρ

[
λl

η

(
λl

η
− ρ

)
+ κ (ϕπ − 1)

]
< 0

The signs of a2 and a1 are guaranteed by our assumption that η ≤ λl/ρ, while the sign of a0 also relies
on the fact that we are imposing ϕπ > φη(Θ) > 1.

Since the denominator of H(Θ) is always negative for any Θ ≥ 0, in order to show that H(·)
has a zero in the interval 0 < Θ < (ηΓ)−1, we need to show that N(Θ) has a zero in the interval
0 < Θ < (ηΓ)−1. To see that this is in fact the case, notice that

N(0) = a0 < 0

and for any 0 ≤ Θ < (ηΓ)−1, we know that

N′(Θ) = 2a2Θ + a1 > 0

Since N(0) < 0 and because N(Θ) is an increasing function of Θ in the relevant interval, to prove that
N(Θ) has a zero in the interval 0 < Θ < (ηΓ)−1, it is sufficient to show that N

(
(ηΓ)−1

)
> 0. We can
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write N
(

1
ηΓ

)
as:

N

(
1

ηΓ

)
=

γσρ

η2Γ2

[
λlΓ +

γσ

ρ

(
λl

η
− ρ

)]
+

1
η2Γ

{
γσ
(
λl − ηρ

)2
+
(
2λl − ηρ

)
ρλlΓ

}
− ρ

λl

η

(
λl

η
− ρ

)

+

(
γσ

ηΓ
− ρ

)
κ [ϕπ − 1]

>
γσρ

η2Γ2

[
λlΓ +

γσ

ρ

(
λl

η
− ρ

)]
+

1
η2Γ

{
γσ
(
λl − ηρ

)2
+
(
2λl − ηρ

)
ρλlΓ

}
− ρ

λl

η

(
λl

η
− ρ

)

+

(
γσ

ηΓ
− ρ

)
κ

[
φη

(
1

ηΓ

)
− 1
]

Since φη(Θ) = 1 + ρσγΘ
κ(1−ηΓΘ)

, we know that

lim
Θ→ 1

ηΓ

φη (Θ) = ∞

So, as long as γσ
ηΓ − ρ > 0, we know that N

(
(ηΓ)−1

)
> 0. To see that γσ

ηΓ − ρ = γσ−ρηΓ
ηΓ > 0, notice that:

γσ − ρηΓ = γλl

{(
∆

1
γ
c − 1

)
− ρη

λl

1
γ

(1 − η) (∆c − 1)
1 + (1 − η) (∆c − 1)

}
≥ γλl

{
∆

1
γ
c − 1 − 1

γ

(1 − η) (∆c − 1)
1 + (1 − η) (∆c − 1)

}
∵ η < λl/ρ

= γλlσ

> 0,

where, we know that the last term is positive from Lemma 1. Thus, there exists exactly one Θ⋆ ∈(
0, (ηΓ)−1

)
for which H(Θ) = N(Θ) = 0. Thus, a Hopf bifurcation occurs at Θ = Θ⋆.

Since a Hopf bifurcation occurs at Θ = Θ⋆, Theorem 3 ensures that there exists Θ⋄ ∈ (0, Θ⋆) such
that for Θ ∈ (Θ⋄, Θ⋆) trajectories which start off the stable manifold around the targeted steady state
initially diverge but then converge to a stable cycle and remain bounded. Thus, for Θ ∈ (Θ⋄, Θ⋆),
even though a large enough ϕπ ensures that the targeted equilibrium is locally determinate, it can-
not deliver global determinacy on account of the multiple bounded trajectories which converge to a
stable cycle around the targeted steady state and satisfy all equilibrium conditions. In contrast, for
Θ ∈ (Θ∗, (ηΓ)−1), the targeted equilibrium is locally indeterminate, and so we also have global inde-
terminacy if risk is too countercyclical Θ > Θ⋆.

Multiple Steady States As in our baseline model, in addition to the global indeterminacy manifesting
as the possibility of the economy converging to a stable cycle, global indeterminacy also manifests in
the form of an untargeted steady state which exists alongside the targeted steady state. We discuss this
next.

As in our baseline model, as long as risk is countercyclical (Θ > 0), there are multiple steady states
in this extension in which ηt is allowed to vary over time. The targeted steady state with x = π =
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m = 0 always exists, but alongside this, there also exists another untargeted steady state in which
x = x < 0, π = π < 0 and m = m < 0 as long as ϕπ > φη(Θ). In other words, as long as risk is not too
countercyclical Θ < (ηΓ)−1 and the targeted equilibrium is locally determinate, there always exists an
untargeted steady state in which the output-gap is negative, inflation is below target and the fraction
of ξl households is larger than in the targeted steady state η = η = λl

λl+λheγΘx > λl
λl+λh

= η. This higher
η in the untargeted steady state implies that:

m =
1
γ

ln
[

1 − Γ
(

η − η

1 − η

)]
< 0

To see that this untargeted steady state exists, we can set ẋt = π̇t = ṁt = 0 in (e.40), (e.38) and
(e.42) to describe the combinations of x, π, m which constitute a steady state:

0 = (ϕπ − 1)π + σ
(

e−γΘx − 1
)

(e.47)

π =
κ

ρ

(
ex−m − 1

)
(e.48)

0 =
(

e−γΘx − 1
) [

Γ + (1 − Γ)
(
1 − e−γm)]+ 1

η

(
1 − e−γm) (e.49)

Combining (e.47) with (e.48) to eliminate π, we can reduce the problem of solving for three equations
in 3 unknowns to 2 equations in 2 unknowns x, m. Thus, in any steady state (x, m) must satisfy:

η
(

e−γΘx − 1
) [

Γ + (1 − Γ)
(
1 − e−γm)]+ (1 − e−γm) = 0 (e.50)

κ (ϕπ − 1)
(
ex−m − 1

)
+ ρσ

(
e−γΘx − 1

)
= 0 (e.51)

Next, we can rearrange (e.50) to express x as a function of m:

x = Ω(m) = ln
[

1 − 1
η

(1 − e−γm)

Γ + (1 − Γ) (1 − e−γm)

]− 1
γΘ

Plug this into (e.51) to get one equation in one unknown m:

G (m) = κ (ϕπ − 1)
[
eΩ(m)−m − 1

]
− ρσ

η

(1 − e−γm)

Γ + (1 − Γ) (1 − e−γm)

Clearly, by inspection, m = 0 satisfies G(0) = 0. Also, since Ω(0) = 0, x = π = m = 0 solves the
system of equations. Consequently, the targeted steady state always exists.

Next, notice that the derivative of G(m) evaluated at m = 0 can be written as:

G′(0) = κ

[
(Γη)−1 − Θ

γρΘ

](
ϕπ − 1 − ρσγΘ

κ(1 − ηΓΘ)

)
,

which is positive as risk is not too countercyclical: 0 < Θ < (Γη)−1, and if monetary policy is aggressive
enough to ensure that the targeted steady state is locally determinate ϕπ > φη(Θ) = 1+ ρσγΘ

κ(1−ηΓΘ)
. Next,

note that as m → −∞, we have G(m) → ∞. Consequently, it must be the case that as we lower m from
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0 towards −∞, G(m) crosses 0 again at least once at some point m < 0. So, there exists an untargeted
steady state (x, π, m) where m < 0. Since m < 0, we have x = Ω(m) < 0 implying that x < 0. It
remains to show that π < 0.

Recall that π = κ
ρ (e

x−m − 1). To show that π < 0, we need to show that x − m < 0, so that
ex−m − 1 < 0. To see that this is in fact the case, we can evaluate (e.51) at x = x < 0 and m = m < 0,
which we replicate for convenience below:

κ (ϕπ − 1)
ρ

(
ex−m − 1

)
= σ

(
1 − e−γΘx

)
We know that since x < 0, the RHS of this expression is negative since for x < 0, we have e−γΘx > 1.
For a given Θ > 0, under the assumption that the targeted steady state is locally determinate, i.e.,
ϕπ > φη(Θ) > 1, we know that ϕπ − 1 > 0. So, the only way that the LHS can also be negative is if
ex−m < 1, which requires that x < m. Thus, we have π < 0 in the untargeted steady state.

However, since this extension has a predetermined variable (the fraction of ξl households), simply
the existence of a second steady state does not imply global indeterminacy. However, we next show
that for a given Θ, as long as risk is not too countercyclical 0 < Θ < (ηΓ)−1 and monetary policy is
aggressive enough, ϕπ > φη(Θ) (which is necessary for local determinacy of the targeted equilibrium),
then the untargeted steady state (x, π, m) < 0 is locally indeterminate. This implies that there exists a
neighborhood around m around the untargeted steady state such that for each m0 in this neighborhood,
there exist multiple combinations of (x0, π0) such that trajectories originating at (x0, π0, m0) remain
bounded. This in turn implies that we have global indeterminacy.

To see that the untargeted steady state is locally indeterminate, note that the Jacobian of (e.40)-(e.42)
evaluated at the untargeted steady state (x, π, m) can be written as:

A =

−γσΘ′ ϕπ − 1 −λl/η′

−κ′ ρ κ′

λlΓΘ′ 0 −λl/η′

 , (e.52)

where

Θ′ = Θe−γΘx > Θ

η′ = ηeγm < η

κ′ = κex−m < κ

We know that for the untargeted steady state to be locally-determinate, A must have two roots with
positive real parts and one negative root. This requires that the determinant of A be negative. However,
as we show next, as long as ϕπ > φη(Θ) (which is a necessary condition for the targeted steady state
to be locally determinate), the determinant of A is positive, which implies that the untargeted steady
state is locally indeterminate.
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Before we evaluate the determinant of A, notice that the trace of A can be written as:

tr(A) = ρ − λl

η′ − γσΘ′

Since η′ < η, Assumption 1 ensures that the trace of A is always negative as long as Θ ≥ 0. This ensures
that at least one of the eigenvalues of A is negative. Next, note that we can express the determinant of
A as:

det (A) =
λl

η′ κ′
[

ργσΘ′

κ′
− (ϕπ − 1)

(
1 − η′ΓΘ′)] (e.53)

To show that this is positive for any Θ as long as Θ > φη(Θ), we need to consider two cases: (i)
η′ΓΘ′ = ηΓΘeγ(m−γΘx) ≥ 1 and (ii) η′ΓΘ′ = ηΓΘeγ(m−γΘx) < 1. First consider the case in which
η′ΓΘ′ ≥ 1, which implies that 1 − η′ΓΘ′ ≤ 0. Then, since we are assuming that ϕπ > φη(Θ) > 1
(which is a necessary condition for the targeted steady state to be locally determinate), the determinant
(e.53) of A must be positive for any Θ > 0. Next, consider the case with η′ΓΘ′ < 1. In this case, it is
convenient to factorize (e.53) as:

det (A) =
λl

η′
(
1 − η′ΓΘ′) κ′

[
ργσΘ′

(1 − η′ΓΘ′) κ′
− (ϕπ − 1)

]
>

λl

η′
(
1 − η′ΓΘ′) κ′

[
ργσΘ′

(1 − η′ΓΘ′) κ′
− ργσΘ

(1 − ηΓΘ) κ

]
∵ ϕπ − 1 >

ργσΘ
(1 − ηΓΘ) κ

=
λl

η′
(
1 − η′ΓΘ′) ργσ

[
Θ′

1 − η′ΓΘ′ −
Θ

1 − ηΓΘ
ex−m

]
>

λl

η′
(
1 − η′ΓΘ′) ργσ

[
Θ′

1 − η′ΓΘ′ −
Θ

1 − ηΓΘ

]
∵ x − m < 0

=
λl

η′
(
1 − η′ΓΘ′) ργσ

[
Θ

1 − η′ΓΘ′ e
−γΘx − Θ

1 − ηΓΘ

]
>

λl

η′
(
1 − η′ΓΘ′) ργσ

[
Θ

1 − η′ΓΘ′ −
Θ

1 − ηΓΘ

]
∵ x < 0

=
λl

η′
(
1 − η′ΓΘ′) ργσΘ

[
1

1 − η′ΓΘ′ −
1

1 − ηΓΘ

]
The last expression is positive if 1 − η′ΓΘ′ = 1 − ηΓΘeγ(m−Θx) < 1 − ηΓΘ, which in turn is true if
m − Θx > 0. In order to prove that m − Θx > 0 for any Θ > 0 and ϕπ > φη(Θ), we have to use (e.49)
evaluated at the untargeted steady state in which m = m < 0 and x = x < 0. We replicate this equation
below for convenience: (

e−γΘx − 1
)

η
[
Γ + (1 − Γ)

(
1 − e−γm)] = e−γm − 1 (e.54)

We proceed to prove that m − Θx > 0 by contradiction. Suppose, instead that m − Θx ≤ 0, which in
turn implies that:

e−γm − 1 ≥ e−γΘx − 1
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Using this, we can rewrite (e.54) as:(
e−γΘx − 1

)
η
[
Γ + (1 − Γ)

(
1 − e−γm)] = e−γm − 1 ≥ e−γΘx − 1

Since, x < 0, we can simplify the above expression by dividing both sides by e−γΘx − 1 to get:

η
[
1 − (1 − Γ) e−γm] ≥ 1,

which is a contradiction since η ∈ (0, 1) and 1 − (1 − Γ) e−γm < 1 because m < 0 and Γ ∈ (0, 1).
Consequently, the LHS is the product of two numbers which are smaller than 1 and their product
cannot be larger than 1. Thus, it must be that m > Θx, and so even in case (ii), we have det(A) > 0.

Thus, we have shown that for any Θ > 0 and ϕπ > φη(Θ), the untargeted steady state is locally
indeterminate: a positive determinant and a negative trace imply that the Jacobian of A must has
two negative roots and one positive root. This means that a 2 dimensional stable manifold (locally)
surrounds the untargeted steady state (x, π, m): for a given m0, there exist multiple combinations of
x0, π0 starting from which (xt, πt, mt) converges to the untargeted steady state (x, π, m) and remain
bounded. Consequently, we have global indeterminacy because there exists a subset of m0 ∈ (−∞, ∞)

for which there exist multiple combinations of (x0, π0, m) starting from which the economy remains
bounded.

Overall, the determinacy properties of the economy in which we don’t adjust λh,t to keep ηt constant
over time are qualitatively similar to those of our baseline model. Thus, even in this extension, the
conclusion is that as long as risk is countercyclical, the equilibrium is globally indeterminate as long as
monetary policy follows a standard Taylor rule, no matter how aggressively monetary policy responds
to changes in inflation.

(a) homoclinic orbit
Θ = 9.98

(b) moderately countercyclical risk
Θ = 21.98 ∈ (Θ, Θ⋆)

(c) highly countercyclical risk
Θ = 28.1 > Θ⋆ = 23.98

Figure 9: Global dynamics as a function of Θ

E.5.2 Calibrated model

In this section, we numerically depict the global dynamics of the economy studied in this section as
a function of Θ. In doing so, we maintain the baseline calibration. However, relative to the baseline
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model, we also need to calibrate η, the fraction of households that are borrowing constrained (or
hand-to-mouth) in the targeted steady state.39 So, following Kaplan et al. (2014), we set the fraction of
borrowing constrained households in the targeted steady state η = 30%.

Given this calibration, the Hopf bifurcation occurs at Θ⋆ = 23.98, which is a lower value of Θ⋆ than
in our baseline model. More importantly, Θ⋆ = 23.98 is lower than the median estimate of Θ = 28.1
from Bilbiie, Primiceri and Tambalotti (2023). However, Θ⋆ = 23.98 still lies within the posterior range
of Θ ∈ (21.98, 29.9). Thus, at Bilbiie, Primiceri and Tambalotti (2023) model estimate of Θ = 28.1, the
above analysis implies that the targeted equilibrium is already locally indeterminate and hence we have
both local and global indeterminacy. However, in a subset of the posterior range Θ ∈ (21.98, 23.98), the
targeted equilibrium is locally determinate but we still have global indeterminacy as in our baseline
model. Figure 9b considers the case with Θ = 21.98, and depicts (in gray) a sample trajectory which
starts in the neighborhood of the targeted steady state (0, 0, 0) (depicted by the black x), diverges away
from it, only to converge to the stable cycle (depicted in blue). These dynamics are qualitatively similar
for the case in which risk is moderately countercyclical, i.e., when Θ is in the interval (Θ⋄, Θ⋆), where
at Θ = Θ⋄, the stable cycles get absorbed in to a homoclinic orbit (see Figure 9a). Given our calibration,
Θ⋄ ≈ 9.98. Finally, Figure 9c depicts local and global indeterminacy when risk is highly countercyclical
Θ is between Θ⋆ and (ηΓ)−1 and shows that for m0 = 0, there are multiple combinations of (x0, π0)

starting from which the economy converges to the targeted steady state. While we do not plot dynamics
in the mildly countercyclical risk case Θ ∈ (0, Θ⋄), we have proved analytically that the equilibrium is
also globally indeterminate in this range. This is because we showed that as long as the targeted steady
state is locally determinate, an untargeted steady state always exists which has (x, π, m) < 0 and is
locally indeterminate. In addition, one can invoke Theorem 4 to establish the existence of a saddle-
connection along which the economy can transition from the neighborhood of the targeted steady state
to the untargeted steady state. However, numerically finding this saddle connection is quite hard in
the context of a 3-dimensional system, so we refrain from doing that.

39Given our simplifying assumption in the baseline model which kept the fraction of ξl households constant over time, the
precise value of η did not matter for aggregate dynamics, provided that η > 0.
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